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EXECUTIVE SUMMARY

The purpose of this technical report is to explain how to take requirements specified using the
Consortium Requirements Engineering (CoRE) method and develop a software design using the heu-
ristics and guidelines from the Ada-based Design Approach for Real-Time Systems (ADARTS®),
This technical report is the result of more than a year of research, development, and pilot project activ-
ity directed toward integrating CoRE and ADARTS. It is part of an ongoing effort to integrate and
improve the products of the Software Productivity Consortium.

Combined Benefits of Both Methods

CoRE is a new approach to software requirements engineering that results in requirements that are
precise, testable, complete, consistent, and resilient in the face of change. ADARTS is a widely
accepted object-oriented method for system and software development that results in a robust design
that is well documented, meets timing requirements, can withstand change, and contains many reus-
able components. By using ADARTS and CoRE together, you obtain the benefits of both methods.

Increased Precision of Software Design

A major benefit of using ADARTS witin CoRE is the increased precision of ADARTS work products.
The precision of CoRE’s behavioral model will enable you to precisely specify the behavior of design
components, facilitating verification and minimizing the risk of misunderstanding by implementors
and customers. This technical report contains optional enhanced verification guidelines for two
ADARTS software design activities, based on the increased precision.

Similarity of Concepts

ADARTS and CoRE have many concepts in common, eliminating the need for a “paradigm shift”
when moving from requirements specification to design. Software engineers have an easier time tran-
sitioning from requirements analysis to design if the two activities are based on similar concepts. Be-
~ause both ADARTS and CoRE use object-oriented concepts, the transition from one activity to
another is smoother than it often has been in the past.

Pilot Project Validation

The first pilot project to use ADARTS with CoRE, Lockheed’s avionics redesign for the C-130J, was
conducted in parallel with the development of this report. This pilot provided useful feedback to the
Consortium, resulting in improved guidelines for CoRE and for the use of ADARTS with CoRE.

What Is in This Technical Report

This technical report explains how to develop an ADARTS software design that satisfies a CORE
requirements specification. It is intended to be used as a supplement to the Consortium Requirements
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Engineering Guidebook (version 01.00.09) and ADARTS Guidebook (version 02.00.13) and provides
guidance in two areas:

1.  ADARTS software design guidelines that must change to be used with CoRE requirements

2. ADARTS software design guidelines that should change to benefit from the increased
precision provided by CoRE requirements

Guidelines in the second category are optional; engineers do not have to follow them to use ADARTS
with CoRE.

Where CoRE has no impact on ADARTS design activities, engineers will use the heuristics in the
ADARTS GuideSook.




1. INTRODUCTION

1.1 PURPOSE OF THIS TECHNICAL REPORT

This technical report explains how you can use the Ada-Based Design Approach for Real-Time
Systems (ADARTS®) to build a software design to satisfy software requirements specified using the
Consortium Requirements Engineering Method (CoRE). This report is intended to be used as a sup-
plement to the ADARTS Guidebook, version 02.00.13 (Software Productivity Consortium 1991), here-
in called the ADARTS Guidebook, and Consortium Requirements Engineering Guidebook, version
01.00.09 (Software Productivity Consortium 1993), herein called the CoRE Guidebook, and discusses
the following:

* Developing a CoRE requirements specification for use with ADARTS
¢ Deriving an ADARTS process structure from CoRE requirements
* Deriving an ADARTS class structure from CoRE requirements

¢ Combining ADARTS processes and objects derived from CoRE requirements into an
ADARTS software architecture design

* Taking advantage of CoRE’s precision in the ADARTS process structuring, class structuring,
and software architecture design activities

1.2 INTENDED AUDIENCE

This technical report is directed at technologists and engineers who are very familiar with the
ADARTS and CoRE methods. This technical . zport does not attempt to explain either ADARTS or
CoRE,; it assumes that you are comfortable with each.

1.3 HOW TO USE THIS TECHNICAL REPORT

Section 3 provides a brief supplement to the CoRE Guidebook and discusses how you apply CoRE
to build a software requirements specificatirn for ADARTS. Subsequent sections supplement chap-
ters in Volume 1 of the ADARTS Guidebook. Each major subsection in this technical report identifies
the section or subsection of the ADARTS Guidebook that it supplements. This technical report
provides guidance in two areas:

1. Areas in which design activities must change to be used with CoRE requirements

2. Areas in which design activities should change to benefit from the increased precision
provided by CoRE requirements
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Where CoRE has no impact on ADARTS design activities, you should follow what is stated in the
ADARTS Guidebook. This technical report addresses ADARTS software design activities. It does not

discuss system-level design.

1.4 ORGANIZATION OF THIS REPORT

This technical report is organized as follows:

¢ Introduction. Sections 1 and 2 introduce the report and provide an overview of how you use
ADARTS with CoRE. Section 2 contains important information about the assumptions and
basic approach to design used in this report.

®  Requirements Specification. Section 3 describes how you use CoRE to build a software
requirements specification for use with ADARTS.

® Process Structuring. Section 4 describes how you derive ADARTS processes from CoRE
requirements and how you take advantage of CoRE’s precision to make clustering decisions
and to specify and evaluate the process architecture.

® Class Structuring. Section 5 describes how you derive ADARTS classes and objects from CoRE
requirements and how you take advantage of CoRE’s precision to specify and evaluate the
classes.

®  Software Architecture Design. Section 6 describes how you combine a process architecture and
class structure derived from a CoRE requirements specification into an ADARTS software
architecture design.

® Case Study. The Appendix provides a case study that illustrates the guidelines in Sections 3,
4,5,and 6.

1.5 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Seriffont ..................o0il, General presentation of information.

Italicized seriffont ................ Mathematical expressions and publication titles.

Boldfaced seriffont ................ Section headings and emphasis.

Boldfaced italicized serif font ........ Run-in headings in bulleted lists and, in the Appendix,
minor subsections.

Typewriterfont .................. ADARTS class specifications.

{ Definition of a set or bag.

[ ceve Optional items (zero or one).

Separator for a list of alternatives.




2. OVERVIEW OF DESIGN APPROACH

This section provides an overview of the approach described in this report to building an ADARTS
software design from CoRE requirements and documents the fundamental assumptions underlying
the approach. You should read this section before reading subsequent sections.

2.1 THE DESIGN APPROACH

Figure 1 illustrates the ADARTS approach to designing software from requirements expressed in
CoRE. The activities and dependencies between activities are the same as in ADARTS. After com-
pleting your requirements specification, you perform the ADARTS process structuring and class
structuring activities. These two activities can be performed concurrently or sequentially in arbitrary
order.

DI

Software oftwa Ada-Based
Requirements %&g itec rg\:: Architecture
Analysis (CoRE) Yesig Design

N

Significant Change Minor Change

Figure 1. ADARTS Software Development Activities

In process structuring, you develop the dynamic view of the software architecture, concentrating on
concurrency, sequencing, and timing. First, you follow the guidelines in this report to create the initial
process architecture. You then follow the ADARTS Guidebook to cluster processes. In class structur-
ing, you develop the static view of the software, concentrating on encapsulation, information hiding,
and planning for change. This report tells you how to map CoRE requirements to ADARTS classes
and objects. In software architecture design, you merge the results of process and class structuring into
a unified software design. In Ada-based architecture design, you choose constructs in the Ada
programming language for each element of the software architecture design.

This report provides guidance in the following areas: aspects of ADARTS that must change to create
a design to satisfy CoRE requirements and aspects that should change to benefit from the precision
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of CoRE requirements. Guidelines in the second category are optional; you do not have to follow
them, but you will have a more precise design if you do. The optional guidelines are enhancements
to ADARTS facilitated by the precision of CORE. The only identified changes to software architecture
design are enhancements. There are no changes to Ada-based architecture design discussed in this
report.

2.2 TERMINOLOGY

The CoRE behavioral model is in terms of four types of variables (monitored, controlled, input, and
output) and four relations between them (required [REQ], nature [NAT], input [IN], and output
[OUT]). The CoRE relations other than NAT contain value functions that usually appear as tables
in a CoRE specification. The CoRE value functions specify one of the following mappings:

* Monitored variables to controlled variables (REQ relation)
* Monitored variables to input variables (IN relation)
¢ Output variables to controlled variables (OUT relation)

CoRE augments value functions with nonzero bounds on error and delay, which makes REQ, IN, and
OUT relations rather than functions. Although the CoRE Guidebook uses the term “value function”
only in reference to the REQ relation, this report uses the term “CoRE value function” to refer to
tables defining any of the three mapnings described above.

2.3 NECESSARY CHANGES TO PROCESS STRUCTURING

The ne~-ssary changes to ADARTS process structuring are:
1. The requirements artifacts you use to develop the initial process architecture
2. The heuristics you use to determine the need for data storage

The guidelines for data storage are necessary because a CoRE requirements specification contains
references to past values of variables instead of defining data stores. Guidelines for process clustering
and evaluation of the process architecture do not have to change from ADARTS, although this report
describes optional enhancements to both steps.

Figure 2 shows the structure of the initial process architecture. Processes in the initial process
architecture are motivated by events in the CoRE specification. The mapping of requirements to the
initial process architecture described in this report serves twc purposes: it is straightforward and is
intended to allow you to take full advantage of potential concurrency. The final process architecture,
which results from your application of the clustering criteria, will almost certainly have fewer
processes. The following discussion explains the significance of each kind of process:

¢ An input stimulus (IN;) process responds to an input stimulus and retrieves the value of an
input variable from a device.

¢ Aninput translation (IN,) uses the input variable retrieved by the IN; process to approximate
the value of the corresponding monitored variable. The tilde (“ ~ ) signifies that the value
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Output Variable
Input Variable to Device

from device

Input Stimulus

Output
Variable

~ Monitored ~Term/Mode =~ Controlled
Variable Variable

Figure 2. Schematic for Initial Process Architecture

computed by the process is an approximation. The approximation of the monitored variable
is used by Term, Mode, or REQ processes that need it.

* There is one Term process for each term defined using a CoRE event. A Term process receives
an input, which is an approximation of a monitored variable or term, or a mode and determines
if the event defining the term has occurred.

¢ There is one Mode process for each mode machine in the CoRE specification. A Mode
process uses an input, which is an approximation of a monitored variable or term. or a mode
of another mode machine and determines if a mode transition has occurred.

* A REQ process uses an input, which is an approximation of a monitored variable or term, or
a mode of a mode machine and updates its approximation of the controlled variable. A
stimulus/response thread that causes a visible change will always go through a REQ process.

* An OUT, process uses an approximation of a controlled variable and generates the
appropriate value of an output variable. Again, stimulus/resnonse threads that cause visible
change will always go through an OUT, process.

¢ At the required times, an OUT; process sends output variable value(s) to the associated
device. Stimulus/response threads that cause visible change will always go through an OUT,
process.

The purpose of IN; and IN; processes is to respond to changes in input variables. Term and mode
processes are motivated by events referenced by mode machine and term definitions. REQ processes
are motivated by changes in monitored variables and the need to change the corresponding controlled
variable. OUT; and OUT, to set output variables so that the corresponding controlled variables are
set properly.

A CoRE specification does not include requirements for internal data storage. Instead, it references
past values of variables that the designer translates into a need for data storage. Figure 2 illustrates
that IN, and Term processes may save approximations of monitored variables and terms for future use.
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2.4 NECESSARY CHANGES TO CLASS STRUCTURING

As with process structuring, the necessary changes to class structuring are limited to the requirements
artifacts that you map to classes and objects. Guidelines for abstract interfaces, the generalization/spe-
cialization structure, the dependency graph, the information hiding structure, and evaluation criteria
do not have to change, although this report describes optional enhancements for the abstract interface
and evaluation criteria. Table 1 summarizes how you map CoRE requirements to ADARTS classes
and objects.

2.5 OPTIONAL ENHANCEMENTS

This report discusses a number of optional enhancements to the process structuring, class structuring,
and software architecture design activities. All of these enhancements are facilitated by the precision
of CoRE requirements and are motivated by the desire to maintain CoRE’s level of precision during
design. You do not have to take advantage of the enhancements discussed in this report. However,
your design will benefit from precise specification if you do so. The benefits of precision include:

¢ Lack of ambiguity, which decreases the probability of misunderstanding by implementors and
reviewers

¢ Improved guidelines for work product evaluation, leading to greater confidence in the design
and reducing the probability of errors.

Enhancements to process structuring include improved guidelines for periodic temporal clustering
and evaluation criteria. Enhancements to class structuring include improved guidelines for work prod-
uct evaluation. Precise notations for specifying process and class behavior are introduced in the
appropriate sections. These notations permit enhanced evaluation criteria for the software architec-
ture design activity as well. In addition, software architecture design is enhanced with guidelines for
relating delay and error.

2.6 CONCERNS TO REMEMBER

This section discusses a number of concerns you should keep in mind while applying the guidelines
in this technical report. These concerns, along with the overviews of the process and class structuring
activities, are the motivation for the design approach described in this technical report.

2.6.1 CoRE VARIABLES AND ADARTS APPROXIMATIONS

The design approach in this report is based on software approximations of environmental quantities.
The monitored and controlled variables in a CoRE specification, as well as terms and modes, repre-
sent quantities in the environment. The only variables that the software can observe and set directly
are input and output variables. For example, software cannot directly observe a monitored variable,
such as the level of fuel in a tank. However, it is possible for software to approximate the value of a
monitored variable, deriving the approximation from input variable(s) retrieved from the hardware.
For example, the software can approximate the level of fuel in a tank by reading from an input device
the amount of pressure exerted by the fuel or the position of a float.
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Table 1. Derivation of Classes and Objects

Kind of Class | CoRE Element Basis of Operation Objects Created
Device Hardware devices (or Reading input variables One for each device
Interface groups of similar devices) | Writing output variables
described by input and Possibl A
A y approximating
output relations monitored variables and
IN and OUT Relations deriving output variables
CoRE boundary classes
External Requirements for which Controlling and One for each external
System you will use external communicating with an system
systems external system
IN and OUT Relations
CoRE Boundary Classes
Data Monitored and controlled | Reading, comparing, and | One for each variable or
Abstraction variables setting internal term
Input and output variables approximations of values
and performing
Terms mathematical operations
Expressions in REQ, IN, |on the approximations
and OUT tables
CoRE boundary, term, and
mode classes
Collection Monitored and controlled | Operations on a set of One for each variable or
variables values (e.g., Create, term defined as a
. Destroy, Add, Delete, collection of values
Input and output variables Tterate, Search, Compare,
Terms Retrieve, Copy, etc.)
Expressions in REQ, IN,
and OUT tables
CoRE boundary and term
classes
State Each unique mode An operation for each One for each state
Transition machine CoRE event that causes a | transition class
CoRE mode classes mode change, or One for each mode
operations for groups of | 12 chie if identical mode
events machines mapped to the
same class
User Interface | Look and feel Operations for acquiring One or more for each user
requirements information from and interface class
IN and OUT relations | Providing information to
human users
CoRE boundary classes
Computation | Tables: REQ, IN, OUT One for each way in which | One for each computation
relations, term definitions | the computation can be class if there is no iptemal
1 : invoked state, possibly multiple
Sﬁmﬁ :::bci:sressxons objects if there is an

CoRE boundary, term, and
mode classes

internal state

.
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It is essential that you remember the difference between a monitored variable and the software’s
approximation of it. In almost all cases, the software’s approximation will differ from the monitored
variable because of the inaccuracy inherent in computer arithmetic and because the monitored vari-
able can be changing while the software is approximating its value. The same observation applies to
terms, modes, and controlled variables. Because they are ultimately defined from monitored vari-
ables, the software can only approximate their values. This technical report denotes an approximation
with the tilde (“~ ). For example, ~ mon_Fuel_Level would be the software’s approximation of the
monitored variable mon_Fuel_Level. It is strongly recommended that you use this notation or a
similar notation to distinguish approximations from the real variables.

In CoRE, delay and error values are used with the ideal functions to describe behavior. In the case
of REQ, they describe the tolerable behavior and, in that context, can be called tolerances. In the case
of IN and OUT, they describe the worst case delay and error that the software must assume during
design and, in that context, describe the precision of the devices. In developing an ADARTS design,
you should convince yourself that your software sets the values of controlled variables within the toler-
ance and delay specified in REQ. To do this, you will have to consider the delay and imprecision of
input and output devices and delay and error introduced by software.

2.6.2 CoRE EvVENTS AND ADARTS STIMULI

All CoRE events signify changes in environmental variables. Environmental variables include time,
a monitored variable. You use CoRE events to determine the need for ADARTS processes and the
stimuli that cause them to respond. This is one of the more difficult aspects of design and one place
for you to apply engineering judgment. The frequency of the event, behavior of the device, and (some-
times) the maximum rate of change for the monitored variables can all influence the designer’s choice
of ADARTS stimuli, message communication, and process logic.

In contract to CoRE events, ADARTS events may be external events or timer events. External events
signify hardware interrupts, and timer events signify the passage of time. The difference between
CoRE events and ADARTS events is that CoRE events refer to changes in environmental quantities
and ADARTS events refer to changes that the software can observe directly.

Section 4 uses the term “unique event.” When a CoRE event table is used to define a value function,
there are usually several event expressions. Often, these event expressions have annotations, indicat-
ing that the behavior associated with the event applies only in a specific mode or when a specific condi-
tion holds. Regardless of the annotations, you should treat multiple event expressions in an event table
that describe the same event as a single, unique event. For example, “@T(mon_Temperature < 0)”
describes the same event as “@F(mon_Temperature > 0).” For purposes of ADARTS process struc-
turing, the expressions “@T(mon_Temperature<0)” and “@T(mon_Temperature<0) when
inmode(mode_Normal)” initiate the same stimulus-response thread, although the latter expression
identifies a qualifying condition for responding to the event. The process logic of the process respond-
ing to an event with a qualifying condition must specify how behavior differs under each different
condition.

2.6.3 UsE oF THE CORE VALUE FUNCTIONS

The value function of the CoRE IN relation maps monitored variables to input variables, and the value
function of the OUT relation maps output variables to controlled variables. In the design approach
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described in this report, the inverse of these functions is necessary. Given an input variable, your
design will approximate the corresponding monitored variable, and given an approximation of a con-
trolled variable, your design will calculate the appropriate value of an output variable. The notation
IN’ is used in this report to refer to the inversion of the IN value function with monitored variables
replaced by their approximations. The notation OUT’ is used in this report to refer to the inversion
of the OUT value function, with controlled variables replaced by their approximations.

The value function of the CoRE REQ relation maps monitored variables and/or terms to a controlled
variable. This value function need not be inverted for design, but the value function expressed in terms
of ADARTS objects (i.e., software variables) is useful for ADARTS process and class structuring. The
notation REQ’ is used in this report to refer to the REQ value function, with monitored and controlled
variables and terms replaced by their approximations. '

REQ’, IN’, and OUT’ are functions derived from REQ, IN, and OUT, respectively, and are used in
this report to describe guidelines in process structuring, class structuring, and software architecture
design. Table 2 summarizes the purposes of these derived functions.

Table 2. Derived Functions

Derived

Relation Purpose Function Purpose

REQ Relates monitored vari- | REQ’ Function that returns an approximation of a con-
ables to controlled vari- trolled variable given monitored variable and/or
ables term approximation(s).

IN Relates monitored vari- |IN’ Function that returns an approximation of a
ables to input variables monitored variable given an input variable

approximation.

OouT Relates output vari- our Function that returns an approximation of an
ables to controlled vari- output variable given controlled variable approxi-
ables mation(s).

The derived functions are useful during ADARTS process structuring when identifying stimuli that
cause processes to respond and when identifying process logic. For example, REQ_for_con_Report
describes which report is generated when the event_Periodic_60_Second occurs, depending upon the
current mode. A process is added to the ADARTS initial process architecture diagram named Gener-
ate_Periodic_Reports that responds to event_Periodic_60_Second by generating the appropriate re-
port. Derived functions are also used during class structuring to describe the abstract interface of
classes.

Inverting value functions is not always trivial, so you may already have documented the inversion of
IN and OUT value functions in the CoRE specification. It is not necessary to document REQ’, IN’,
and OUT’ as work products. However, both process structuring and class structuring use the inversion
of IN and OUT value functions. Therefore, in the nontrivial cases, make sure that you invert the
functions once to save time and avoid confusion before starting process and class structuring.

2.6.4 UsE oF THE CORE NAT RELATION

The NAT relation documents constraints placed on the software system by the external environment
and constraints on monitored and controlled variables. You should consider NAT when you are
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defining the behavior of processes and classes. For example, in process structuring, you can use NAT
to determine the frequency of a timer event based on knowledge about the maximum rate of change
of a monitored variable and the required tolerance of a controlled variable. In class structuring, you
can use NAT to determine parts of the abstract interface, such as assumptions, usage constraints, and
undesired events.

2.6.5 DEALING WITH DELAY AND ERROR

The IN and OUT relations capture the worst case delay and error associated with input/output
hardware. The REQ relation captures the maximum tolerance for error in a controlled variable and
the initiation delay and completion deadline for setting a controlled variable’s value. To meet require-
ments, the software must set the value of a controlled variable within the time interval defined by the
initiation delay and completion deadline, and the value must be within the specified tolerance.

The easiest approach to dealing with delay and error is to consider them separately, dealing with delay
during process structuring and error during class structuring. In process structuring, you should esti-
mate the execution of each process and ensure that every controlled variable is set between the initia-
tion delay and completion deadline, taking into consideration the delay imposed by hardware devices.

In class structuring, you should record the maximum error associated with operations and ensure that
total error imposed by software will not cause the value of a controlled variable to exceed the tolerance
in REQ. To do this, you should consider each class and operation needed to set a controlled variable
from the monitored variable. This includes retrieving an input variable, using it to approximate a mon-
itored variable, using that approximation to approximate the controlled variable, determining the
appropriate value of the output variable, and sending the output variable value to the device. The total
of the maximum error associated with each operation, combined with the device errors, must not
exceed the error bound specified in the REQ relation.

If this is not feasible, you must consider the relationship between delay and error and take into account
the rate of change of the monitored variable. This is discussed in more detail in Sections 3.3 and 6.4.

2.7 NOTATION

This section describes the notation used in many of the examples. The notation used in this report has
the advantage of precision, which benefits you as described in Section 2.5 However, a specific notation
is not critical to the design approach described in this document. Wherever possible when discussing
requirements, this report follows the notation of the CoRE Guidebook. When dealing with design,
this report follows the notation of the ADARTS Guidebook.

For elements of the design, the tilde denotes approximations of the environmental variables. For
example, “~ mon_Buoy_Location” represents an ADARTS design element that approximates the
monitored variable mon_Buoy_Location.

REQ’, IN’, and OUT" are notations representing modified CoRE value functions and are defined in
Section 2.6.3.

The subscripts  and , identify specific types of processes in the initial process architecture and are
discussed in Section 2.3.

10
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This report uses concepts and notation from set theory to introduce more precision in the descriptions
of ADARTS work products. Braces are used to itemize the elements of a set. The empty set is denoted
by “{}.” Where S, S, and S; are sets or bagsl, this report uses the following standard operations from
set theory:

e §; UNION §; denotes the set composed of all elements in either S; or S; or both.
e S; INTERSECT $; denotes the set composed of all elements in both S; and S;.
e §; — Sy is the set formed by removing from S; all elements in S; INTERSECT S, .
e SIZE(S) denotes the number of elements in S.

In addition, this report introduces the following nonstandard operations:
¢ OLDEST(S) denotes the oldest (i.e., least recently added) element of S.

¢  SUMC(S) is the arithmetic sum of the elements in S. SUM(S) is undefined if the elements of
S are not numeric.

The following notation is used to define the content of a set, where it is not feasible to itemize the
elements. Where i is a placeholder, D(i) is an expression involving i, and F(i) is some mathematical
function of i, the set {i: D(i): F(i)} is the set of all values F(i) such that D(i) holds. The placeholder
i has no meaning outside the braces; it is similar in that respect to a local variable declared in a subrou-
tine. D(i) defines the set from which i is taken; applying F to each value in this set produces the set
defined by the expression. Unless otherwise noted, placeholders i, j, k, 1, m, and n denote integers;
other letters denote real numbers. For example:

e {i:i>0:i2} = {1,4,9, ...} is the set of squares of the positive integers.
e {i:i>0:i} = {1, 2,3, ...} is the set of positive integers.
e {i:0<i=<S5:i} = {1,2,3,4,5} is a finite set with five elements.

A similar notation is used to define operations on a set without defining the set separately. For
example:

e (SUMi: 0<i=<4:i%) = 1+4+9+16=30 is the sum of the squares of the first four integers.

* ROUND|[(SUM (i:0=i=<5:mon_Air_Temperature(t—10i)) / 6] is the average of the past six
readings of air temperature, where the readings are taken at 10-second intervals and the most
recent reading just occurred.

Logical conjunction, disjunction, and negation are denoted by AND, OR, and NOT, respectively.

The following notation is used to specify the abstract interfaces of classes. Where P is an expression,
ERROR(P) in a postcondition means that an operation on a class returns an error flag or raises an
exception signifying P. Where X is a name referenced in a precondition, Updated_X is used in a post-
condition to denote the value of X between completion of the operation and the next change to X. X
and Updated_X will usually refer to the abstract state.

1. Abagisasetin which elements can be repeated. Many collections of data stored by software are bags rather than sets.
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3. BUILDING A CoRE SPECIFICATION FOR USE
WITH ADARTS

This section highlights the features of CoRE that deserve special attention when ADARTS is the
companion design method. These suggestions should make the design activity simpler and reduce the
need to iterate back to requirements specifications.

Section 3.1 explains how the inverse of a value function for device behavior is accomplished and why
it is important. Section 3.2 discusses various aspects of events and what must be specified to complete
a design. Section 3.3 makes a simplifying assumption about error and delay. However, if this
assumption cannot be made, see Section 6.4 for a related discussion. Some features of CoRE that were
not used in the case study are discussed in Section 3.4.

3.1 INVERTING IN AND OUT VALUE FUNCTIONS

The design approach discussed in this report involves estimating the value of environmental variables.
The software estimates the monitored value from an input value, calculates an estimate of the desired
controlled value, then determines an appropriate output value to achieve the desired behavior.

Figure 3 illustrates this flow of values through the software. IN’ is the inversion of the IN value
function, with monitored variables replaced by the corresponding approximations. For example, if the
IN value function maps mon_Water_Temperature to in_Water_Temperature_Sensor, the IN’ function
will map in_Water_Temperature_Sensor to ~ mon_Water_Temperature. The REQ’ function is the
REQ value function, with monitored and controlled variables replaced by their approximations. The
OUT function is the inversion of the OUT value function, with controlled variables replaced by their
approximations.

l —————————————————— Requirements-—— —————————————————=— I
Design
Ntld —> o, L5 Motlored o T, “Colid L oupt s, Gt
IN | IN: | REQ" I our | OUT—
REQ

Figure 3. Flow of Values Through Software

The CoRE Guidebook mentions inverting a value function (see Section 11.3.3 of the CoRE
Guidebook) but does not suggest that it is necessary. In software design, you will use the IN’, REQ’,

13
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and OUT functions rather than the value functions of IN, REQ, and OUT. It does not matter whether
you derive IN’, REQ’, and OUT’ during requirements analysis or as the first activity in ADARTS de-
sign. What does matter is that you have them available for use in process structuring and class struc-
turing. If you derive these functions as part of design, you should do so before you begin process
structuring or class structuring. Otherwise, you will have to derive them twice, resulting in unnecessary
work and an increased probability of a mismatch between processes and objects. The mismatch would
have to be resolved during software architecture design.

Table 3 contains an example of an IN value function and the corresponding IN’ function in which IN
describes a device that modifies two input variables: one to indicate the sign and the other, its unsigned
value.

Table 3. Example of IN’ Function

Function Domain Range Definition
IN Value Function mon_Temp in_Sign, in_Value |in_Sign=sign(mon_Temp)
in_Value=log(mon_Temp)

IN’ Function in_Sign, in_Value | ~mon_Temp ~mon_Temp=in_Sign*10/n-Velue

3.2 FREQUENCY OF EVENTS

To build an ADARTS design, a frequency profile must be specified for each CoRE event. The designer
derives ADARTS external events, timer events, message communication, and process logic based on
the expected throughput driven by event frequency and tolerable delay. Performance analysis is based
on event frequency and tolerable delay.

You should explicitly state a frequency for each event before beginning process structuring. For
periodic events, the frequency can be expressed in the event expression (@T(mon_Time mod 10)) or
as part of an associated variable definition (see Section 4.2.1 of the CoRE Guidebook). For
on-demand events (usually in an event table), the maximum frequency (minimum time between
events) is required. Other characteristics, such as mean time between events, can also be helpful but
are not required. The frequency of events related to the behavior of input and output devices (e.g.,
device interrupts) must also be specified.

The rest of this section ex;"lains why this frequency information is important by looking at how
software gets the value of an input variable. Even if an event is not periodic, there is a window of
opportunity for the software to use an input variable before it changes. This time interval is illustrated
in Figure 4.

Stepping through the illustration chronologically: (1) an event occurs; (2) an initiation delay
(optionally zero) is required before the input variable can change; (3) the input variable must change;
(4) the window of opportunity begins for the software to use the variable; (5) the next event (for this
event class) occurs; (6) the initiation delay expires, (7) ending the window of opportunity for using the
value of the variable resulting from the first change.

If the software polls the input variable, this window of opportunity suggests a maximum interval
between successive timer events to ensure that no change in value is missed. If the software responds
to an interrupt, this window of opportunity suggests how quickly an interrupt must be processed.

14
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. maximum delay , v maximum delay
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Figure 4. Illustration of Deriving Period or Maximum Delay for INs
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Without knowing the minimum time between events, there is no way for the designer to allocate timing
behavior to the IN; process. Other constraints may require stricter constraints on INg, but the designer
must still verify that IN; acquires the input variable before it is lost.

3.3 ERROR AND DELAY

A key benefit of ADARTS is the separation of activities for designing the dynamic and static views of
the software. If the design decisions in each activity depended on each other, this benefit would be
essentially lost. Ideally, you will be able to deal with delay in process structuring and error in class
structuring. This is possible if there is no dependency between error and delay or if the dependency
is not strong. However, error and delay can be mutually dependent. When they are dependent, two
possibilities are to:

e Make cursory analyses of error and delay during class structuring and process structuring,
respectively. Conduct the complete analysis in software architecture design (see Section 6.4)
and iterate to previous activities if necessary. This does leave the designer more flexibility in
choosing a design along with the more complex analysis.

* Derive independent functions of error and delay. Most of this report assumes that the error
and delay functions are independent, whether as specified by CoRE or derived before
attempting an ADARTS design.

Figure 5 illustrates a simple dependence between error and delay. The line between points b and ¢
represents the potential relationship between error and delay. Acceptable (REQ) or actual
(IN/OUT/NAT) behavior lies below the diagonal line. To deal with error and delay independently

during design, error and delay must be specified independently. In the case of REQ, values of error
Error

Delay

Figure 5. Illustrating Dependency Between Error and Delay




3. Building a CoRE Specification for Use With ADARTS

(a) and delay (d) must be selected so that if the software meets both tolerances independently, it meets
the more lenient dependent tolerances. In the case of input devices (IN/OUT) and other behavior
(NAT), worst case behavior must be assumed: maximum error (b) and maximum delay (c). Again, if
the software meets timing constraints, assuming worst case behavior in both error and delay, it will
meet the more lenient dependent tolerance.

3.4 CoRE REQUIREMENTS ARTIFACTS NOT USED

The case study does not use initiation and termination events (see Section 4.2.1 of the CoRE
Guidebook) or sustaining conditions (see Section 4.3.1 of the CoRE Guidebook). This report does
not make any recommendations on using these requirements artifacts during design.
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4. PROCESS STRUCTURING

The ADARTS process structuring activity allows you to capture a dynamic software design that shows
how processes interact to produce responses from stimuli. A process has its own thread of control that
executes concurrently with other processes in the system. Concurrency and timing issues can be
addressed in part by analysis of the system’s processes and their interactions with each other and with
the environment.

ADARTS software design heuristics, including process and class structuring, are based on the use of
real-time structured analysis (RTSA) for specifying software requirements. This section explains how
to derive an ADARTS process structure from a CoRE software requirements specification while
limiting impact on the ADARTS process structuring activity as defined for RTSA. Additionally, this
section describes how to maintain the higher degree of precision provided by CoRE by expressing
process behaviors in terms of events to which a process must respond and the sequence of actions
associated with each event (the use of this notation is optional).

When developing a process structure from an RTSA specification, the first step is to map elements
of the RTSA specification to an “initial” (or “preliminary”) process architecture. The initial process
architecture is intended to provide the opportunity for maximum concurrency without regard for the
inherent overhead, such as interprocess communication and context switching. The intent is to allow
the designer to apply the ADARTS process clustering heuristics unmodified, regardless of the form
in which the software requirements have been specified. The approach described in this report
concentrates on this first activity—mapping elements of a CoRE specification to an initial process ar-
chitecture. The initial process architecture provides a basis upon which ADARTS process clustering
heuristics can be applied. During process clustering, you reduce the number of processes so that the
advantages of concurrency, scheduling flexibility, and maintenance are balanced with pe.formance
requirements and complexity.

This section is not meant to replace the process structuring section (Section 8) of the ADARTS
Guidebook, it is meant to supplement that section when you are using CoRE to specify software re-
quirements. For example, this section does not describe the use of entity modeling during process
structuring (Section 8.5 of the ADARTS Guidebook), which does not imply that entity modeling
should not be used during process structuring because it is not part of CoRE.

When using a CoRE specification as the front end to ADARTS, you will derive the process
architecture from the CoRE behavioral model, including:

® Variables (monitored, controlled, input, and output) and terms
¢ Relations (REQ, IN, OUT, NAT)

This section is divided into a number of subsections describing how the use of a CoRE specification
affects an individual step of the ADARTS process structuring activity:
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* Deriving an ADARTS initial process architecture from a CoRE specification (see Section 4.1)

¢ Developing process behavior specifications and maintaining the degree of precision provided
by CoRE (see Section 4.2)

* Applying ADARTS process clustering criteria iteratively to consolidate processes (see
Section 4.3)

¢ Identifying process communication and synchronization (see Section 4.4)
¢ Analyzing the design using the evaluation criteria (see Section 4.5)

Section 4.6 describes possible areas of future work.

4.1 DERIVING THE INITIAL PROCESS ARCHITECTURE

When performing the ADARTS process structuring activity, you first map requirements artifacts to
an initial process architecture and then cluster (or combine) processes to reduce complexity and the
overhead introduced by large numbers of concurrent processes. The ADARTS initial process architec-
ture is a snapshot of the process architecture taken immediately after mapping from a requirements
specification but before process clustering begins. This section describes how to map from the ele-
ments of a CoRE software requirements specification to the set of processes in the ADARTS initial
process architecture. Use this section with Section 8.3 of the ADARTS Guidebook. The objectives of
this mapping are as follows:

¢ To provide an initial process architecture that:
— Isolates potentially concurrent activities
— Captures finite state machines
— Identifies the need for data storage

— Captures the dynamic characteristics of hardware devices with which the software
must interact

¢ To maintain the degree of precision provided by CoORE

¢ To allow the designer to apply the ADARTS process clustering heuristics unmodified (see
Section 8.11 of the ADARTS Guidebook), regardless of the form in which the software
requirements have been specified

In ADARTS, a process represents a sequential thread of execution that detects and reacts to a
stimulus. Section 4.1.1 describes the basis of the initial mapping — how to identify these stimuli from
events in a CoRE model. Events of interest for the initial mapping are related to the following CoRE
artifacts:

* Input and output variables (see Section 4.1.2)

® Monitored and controlled variables (see Section 4.1.3)
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e REQ value functions (see Section 4.1.4)
e Mode machines (see Section 4.1.5)

e Terms (see Section 4.1.6)

In addition, the initial process architecture must specify the need for data storage. Section 4.1.7
describes how to identify data stores.

Figure 6 illustrates the general scheme for the initial mapping, where parallelograms represent
processes, arrows between processes represent data flow, and arrows attached to data stores represent
recording or usage of approximations of monitored variables. Figure 6 illustrates the same flow of data
as illustrated in Figure 3, except requirements have been allocated to processes. The iiiitial process
architecture indicates only data flow and data dependencies (e.g., IN; processes depend on IN; pro-
cesses to supply the values of input variables), not necessarily message communications, which will
be identified after process clustering.

Input_Stimulus

Output_
Data Variable

Storage

Input_
Variable

~ Monitored

IN, Variable

~ Monitored
Variable

Output_

Input_
Variable

Variable

~ Controlled

~ Monitored
Variable

Figure 6. General Scheme for Initial Process Architecture

Table 4 characterizes the kinds of processes in the ADARTS initial process architecture. Section 4.1
describes the mapping in more detail.

Table 4. Characterization of Processes in Initial Mapping

Type of ADARTS Basis for Process
Process Purpose Inputs Outputs Behavior
Input Variable To acquire the Hardware interface |Input variable Frequency and
(INy) value of an input | with input device device information
variable from a related to input
device variable
Monitored To approximate a | Valucs of one or Approximation of | Inversion of an IN
Variable (IN;) monitored variable |more input a monitored value function
from input variables variable
variable(s)
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Table 4, continued

Type of ADARTS Basis for Process
Process Purpose Inputs Outputs Behavior
Mode To execute a finite | Approximations of | Current operating | Mode machine
state machine one or more mode
monitored
variables and/or
terms
Term To calculate the Approximations of | Approximation of | Term definition
value of a term one or more term
based on the monitored
occurrence of an variables and/or
event terms
REQ To approximate the | Approximations of | Approximationof |REQ’ (the REQ
value of a one or more a controlled value function
controlled variable | monitored variable expressed in terms
variables and/or of variable
terms approximations,
see Table 2)
Controlled To calculate an Approximation of | Output variable The inversion of an
Variable (OUTY) output variable one or more OUT value
from the controlled function
approximation of | variables
controlled
variable(s)
Output Variable To submit the value | Output variable Hardware interface | Frequency and
(OUTy) of an output with output device | device information
variable to a device related to output
variable

Before mapping to an initial process architecture, you should specify the IN’, OUT’, and REQ’
derived value functions as described in Section 2.6.3. The IN’ derived value function identifies how
the software can approximate the value of a monitored variable given the value of an input variable.
The OUT’ derived value function identifies how the software can set the value of a controlled variable
using output variables. The REQ’ derived value function describes the required behavior of the soft-
ware in terms of approximating the value of a controlled variable given the approximations of one or
more monitored variables or terms. Throughout this section, inverted IN and OUT value functions
are referenced using the notation IN’ and OUT’ for the purpose of brevity.

4.1.1 STIMULI

In ADARTS, a process represents a sequential thread of execution that detects and reacts to a
stimulus. Processes in the initial process architecture are derived from events described in the artifacts
of a CoRE behavioral model. Stimuli in an ADARTS design are design artifacts that indicate the
detection of CoRE events.
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A periodic stimulus may appear in a number of different forms in an ADARTS design:

e A periodic event triggered internally by a timer, which may be implemented by hardware or
software

e An event triggered by an external device that happens to occur on regular intervals

e A message passed between processes that happens te occur on regular intervals because the
originating process responds to a periodic stimulus by passing a message

An aperiodic stimulus may appear in the following forms in an ADARTS design:
e An event triggered by an external device that does not occur on regular intervals

e A message passed between processes that does not occur on regular intervals because the
originating process responds to an aperiodic stimulus by passing a message

In a CoRE specification, events are occurrences of a change in a conditional value. Events take the
form of requirements that must be satisfied either periodically or upon demand (i.e., asynchronously).
When analyzing events in a CoORE model to identify stimuli for ADARTS processes, be sure to only
consider distinct events (see Section 2.6.2). Sets of events that are not distinct can be considered the
same event for the purposes of ADARTS process structuring. Table 5 identifies possible sources of
asynchronous and periodic events of interest to ADARTS in a CoRE behavioral model and includes
examples of each.

Table 5. Identifying CoRE Events for ADARTS

Indicators of CoRE Events
CoRE Artifacts Periodic Asynchronous
Event tables defining value | @T(a function of time), e.g., @T(condition) or @F(condition),
functions @T[(mon_Time MOD 10 seconds) |e.g., @F(in_Input_Variable = 0)
= 0]
Timing requirements or Periodic scheduling constraints Demand scheduling constraints
timing behavior associated imply periodic events of a given fre- | indicate asynchronous events that
with controlled variables (or | quency (typically indicated by condi- |should be identified in the REQ
their corresponding REQ tion or selector tables). relation (defined by an event table),
relations) e.g, @T(mon_Monitored_Variable
Device information Devices that periodically produce Active devices (i.e., asynchronous,
associated with input or software inputs or consume software | interrupt-driven devices)
output variables (or their outputs
corresponding IN and QUT
relations)
Passive (i.e., continuous) devices may indicate either periodic or
asynchronous events, depending upon the software’s need to retrieve
inputs or produce outputs.

The behavior of the REQ process may be used to drive the events and message decisions outward
toward the INg and OUT; processes that interact with devices (see Figure 6). An event in REQ’ may
occur upon a change in the approximation of a monitored variable. But for the purpose of reducing
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communication, the logic of the INg and IN, processes involved in the approximation of the monitored
variable may be modified to limit the frequency with which they respond. For example, if an IN; pro-
cess periodically samples an input variable and passes its value to an IN; process, then the IN; process
need not react unless it detects a change in the approximation of the monitored variable. Equivalently,
the sampling rate of the IN; process may be decreased such that it detects changes in the values of input
variables more efficiently (i.e., its period may be reduced based on known characteristics of a moni-
tored variable, such as those defined in NAT relations). The logic of the REQ process need not be
concerned about detecting a change in the approximation of the monitored variable; this occurrence
is assumed upon receipt of the value of an approximation of a monitored variable.

Events in a CoRE behavioral model are used to identify stimuli in an ADARTS initial process
architecture and, therefore, the processes that respond to stimuli. Sections 4.1.2 through 4.1.6 de-
scribe how to generate an initial process architecture from the artifacts of a CoORE model according
to the indicators described in Table 5.

4.1.2 INPUT AND OUTPUT VARIABLES

The mapping of CoRE input and output variables to processes in the initial process architecture is
based on the need to retrieve or produce data. The guidelines in this section are similar to the guide-
lines in the ADARTS Guidebook for identifying processes that interact with devices (see Section 8.4
of the ADARTS Guidebook).

Processes that retrieve input variables are called INg processes. Processes that produce output
variables are called OUT; processes. The work performed by an INg or OUT; process is to respond
to a stimulus indicating the need to retrieve an input or produce an output. Figure 7 shows an example
of an IN; process that responds to a device interrupt by sampling the value of an input variable and
forwarding it. Figure 8 shows an example of an OUT; process that responds to the receipt of an up-
dated output variable by submitting that variable to an output device, which uses the output variable
to modify a controlled variable.

event_Device_

Interrupt

in_Input_ in_Input
Variable Variable

Figure 7. IN; Process Example

M out_Output_ "t-O“tPut.

Variable Variable

Figure 8. OUT, Process Example

For each CoRE input and output variable, begin by creating a process whose job is to react to a
stimulus by acquiring the value of an input variable from a device or submitting the value of an output
variable to a device. There are three kinds of devices that determine the stimuli that cause IN; and
OUT; processes to respond:
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e Active devices (see Section 4.1.2.1) signal interrupts when input variables have been updated
or when output variables should be produced by the software.

e Periodic devices (see Section 4.1.2.2) produce input variables or consume output variables at
regular intervals.

e Passive (or continuous) devices (see Section 4.1.2.3) produce input variables or consume
output variables transparently to the software (typically at very high periodic frequencies).

Input and output variable definitions should indicate whether input and output devices are active,
periodic, or passive. Use corresponding input variable definitions to identify the stimulus causing an
IN; process to respond. Equivalently, use corresponding output variable definitions to identify the
stimulus causing an OUT; process to respond. For a process that interacts with an active device, the
stimulus is an external event (i.e., a device interrupt); for a process that interacts with a periodic de-
vice, the stimulus is a periodic event; and for a process that interacts with a passive device, the stimulus
will be identified later, based on the corresponding REQ value function (see Section 4.1.4).

Typically, each input variable and output variable maps to a single process that retrieves input or
produces output in response to receipt of a message or occurrence of a timer or external event (see
Section 4.1.1). Less frequently, an input variable or output variable will map to multiple processes,
e.g., one executing periodically and another executing upon demand (i.e., asynchronously). Figure 9
shows an example of two IN; processes that react to different stimuli but sample the same input vari-
able. The process INg Periodic samples in_Input_Variable upon occurrence of the event
event_Periodic_10_Second. The process INs_Demand process samples in_Input_Variable upon
receipt of Need_to_Sample_Input.

IN,_
Periodic

event_Periodic_
10_Second

in_Input_

in_Input_
Variable

in_Input_
Variable

in_Input_
Variable

Need _to_
Sample_Input

Figure 9. Periodic and Demand IN, Processes Example

4.1.2.1 Active Devices

If a device signals an interrupt indicating the availability of an input variable (or the need to produce
an output variable), use an external event to activate the INs (or OUT) process. Input and output vari-
able definitions should indicate the interrupt(s) signaled by active devices. Event/response pairs in an
event table defining the corresponding IN’ or OUT’ value function should indicate the required re-
sponses to device interrupts. For example, Figure 10 illustrates the IN’ value function corresponding
to the active emergency button device in the Host-at-Sea (HAS) Buoy case study in the Appendix.

The events in Figure 10 are defined as follows:
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Event ~ mon_Emergency_Button
it DELELD LTI LT LT B bt R EL L PP
------------------------- 2 et E LT P PP
event_Button_Indicator_Set "Pressed”
event_Button_Indicator_Reset "Released”

Figure 10. IN’ for mon_Emergency_Button

event_Button_Indicator_Set = @T(in_Button_Indicator = *2#1lxsoxoxxxx#”)
event_Butt:on_y_Indicator_Reset = @T(in_Button_Indicator = *2#0xx00ox#”)

Figure 11 illustrates the resulting IN process activated by the interrupt from the emergency button.
The process Monitor_Button_Indicator interfaces with the emergency button device by detecting the
interrupt Button_Interrupt, sampling the input variable Button_Indicator, and passing its value to
another process. In this case, you are really only concerned with event_Button_Indicator_Set because
there is no need to respond to the button being released. Therefore, the process logic could be
simplified and the amount of message communication could be reduced by ignoring the event
indicating that the button has been released.

Button_
Interrupt

Monitor_Button_ ?ﬁ.ton_
Button, Indicator (IN) ndicator,
Indicator / >

Figure 11. IN; Process Activated by a Device Interrupt

4.1.2.2 Periodic Devices

If a device periodically updates an input variable or periodically reads an output variable, use a timer
event with the same period as specified by the CoRE description of the device behavior. Later, when
fine-tuning the process architecture, you should consider whether all samples of the input and output
variables are of interest to the software. If not, you may decide to change the IN; or OUT; process to
a demand-driven process or to reduce the frequency of its activation.

For example, Figure 12 illustrates the IN’ value function corresponding to the Omega navigation
system in the HAS Buoy case study in the Appendix.

Event ~ mon_Buoy_Location

Latitude <= (Degrees <= MAX(<Latitude>in_Omega_System_Input.Bytes_1&2, 359),
Minutes <= MAX(<Latitude>in_Omega_System_Input.Byte_3, 59),
Seconds <= MAX(<Latitude>in_Omega_System_Input.Byte_4, 59) +
. .. MAX(<Latitude>in_Omega_System_Input.Byte_5, 99) / 100),
event_Periodic_ Longitude <= (Degrees <= MAX(<Longitude>in_Omega_System_Input.Bytes_1&2, 359),
30_Second Minutes <= MAX(<Longitude>in_Omega_System_Input.Byte_3, 59),
Seconds <= MAX(<Longitude>in_Omega_System_Input.Byte_4, 59) +
MAX(<Longitude>in_Omega_System_Input.Byte_5, 99) / 100)

Figure 12. IN’ for mon_Buoy_Location
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The event in Figure 12, defined as follows, indicates that the approximation of the monitored variable
could change value periodically, at 30-second intervals, based on the update rate of the input variable
in_Omega_System_Input:

event_Feriodic_30_Second = @T([mon_Time MOD 30 seconds] = 0)

Figure 13 illustrates a periodic INg process activated at the same frequency with which the input device
updates the value of its corresponding input variable. The process Monitor_Omega_System_Input in-
terfaces with the Omega system by sampling the input variable Omega_System_Input periodically
upon occurrence of the timer event Time_30. The value of Omega_System_Input is passed on to

another process.
~ Time_30 Omega_
Omega Monitor_Omega_ ?ystem_
- nput
System- System_Input (INy) u

Input

Figure 13. IN; Process Activated Periodically

You should try to synchronize the periodic intervals of INg processes and input devices to minimize
the delay in which the software recognizes changes in the values of input variables. Equivalently, you
should try to synchronize the periodic intervals of OUT; processes and output devices. Without any
attempt at synchronization, the worst case scenario introduces a delay equal to the period.

4.1.2.3 Passive Devices

If a variable is produced or consumed continuously by a device (i.e., the device is passive) or upon
detection of a software-driven interrupt, the stimulus must be determined from REQ’. For an input
variable, identify the expressions in REQ’ involving approximations of monitored variables calculated
from the input variable under consideration. For an output variable, identify the expressions in REQ’
involving approximations of controlled variables that affect the values of the output variable under
consideration.

For each event associated with the expressions, use the frequency profiles for the corresponding
events in the CoRE specification and allotted time for the value function to be evaluated to determine
how often the input variable must be sampled or the output variable must be produced. As a result,
you will either:

* Use a periodic stimulus causing the input variable to be polled or output variable to be
produced at regular intervals.

¢ Use the receipt of a message from another process (as described in Section 4.1.4) if an input
variable must be retrieved or output variable must be produced upon demand by another part
of the software system.

Determining the ideal frequencies of periodic INy and OUT; processes that interface with passive
devices from a REQ value function is nontrivial. There are a number of requirements artifacts that
affect the frequency with which IN; processes (and OUT processes) should be activated:

¢ The frequency with which a device updates the value of an input variable and the tolerable
delay specified by relevant REQ relations. For example, assume a temperature sensor
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measures air temperature every 10 seconds, with the first measurement taken at time tg (i.e.,
the intervals of the process and the device are in phase). The periodic frequency of the corre-
sponding IN; process and its synchronization with the device have an effect on the average and
worst case delay in the software recognizing updates to the input variable:

— If the device and the INg process are in phase (i.c., the INg process takes its first sample
at or immediately after time tg), a period of 10 seconds will provide the best average
and worst case delays possible. Increasing the INg process’ sampling rate will not
reduce delay and could even increase it.

— If the device and the IN process are not in phase, average and worst case delays are
functions of the period of the IN; process and the difference between ty and time that
IN; takes its first sample. In this case, increasing the sampling rate of the INg process
will improve average and worst case delay, and a period of 10 seconds will provide a
maximum delay of 10 seconds.

e NAT relations that specify the maximum rate of change of the monitored variable are
measured by an input variable. You may be able to determine the maximum necessary sam-
pling rate of the IN; process from the maximum rate of change of a monitored variable and
the accuracy requirements for controlled variables affected by changes in a monitored vari-
able. For example, assume that an accuracy requirement for reporting speed is £ 0.5 mph and
there is a NAT relation stating that | A mph /A t| < 10 mph/s. Therefore, it takes at least 0.5/10
= 0.05 s for the car to change speed by 0.5 mph. So, the periodic sampling rate need not be
greater than 20 Hz in a perfect world. However, there is delay introduced by the software and
the devices it uses that must be factored into the sampling rate.

In the HAS Buoy case study, the REQ relation for the controlled variable con_Report (see
Section App.2.11.1) indicates that wind and temperature reports must be produced every 60 seconds.
Wind and temperature reports contain water temperature readings that must be accurate within a cer-
tain degree. Assuming that six samples of water temperature readings per minute are required to ob-
tain the required accuracy (as was assumed in the case study), use a periodic INg process activated
every 10 seconds (similar to the IN process in Figure 13).

It is possible for both periodic and asynchronous stimuli to activate the INg or OUT; processes that
interface with passive devices when the variable is indirectly involved in multiple REQ relations. In
this case, create two processes: one activated by a periodic event and one activated asynchronously
(as illustrated in Figure 9). It is also possible to determine the need from different REQ relations to
sample an input variable or to produce an output variable at different periodic intervals. In this case,
you may be able to use a single periodic stimulus occurring at the higher frequency.

4.1.3 MONITORED AND CONTROLLED VARIABLES

For each monitored variable in a CoRE model, use the inverse of the IN value function, IN’, to define
an IN, process for each unique event (see Section 2.6.2) used in the function. Each IN; process reacts
to a stimulus by changing the value of the approximation of a monitored variable. Use the IN’ value
function to specify the approximation of a monitored variable from input variable(s) performed by
each IN; process.

The inputs to an IN; process are one or more input variables; the output is an approximation of a
monitored variable. Figure 14 shows an example of an IN; process that responds to the receipt of either
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of two different input variables because two input variables are used in approximating a monitored
variable.

event_Device

Interrupt
. in_Input_
in_Input_ Variable 1 ~ mon_
Variable_1 = Monitored_
event_Periodic_ Variable another_
10_Second process
in_Input_ in_Input_
Variable_2 Variable_2

Figure 14. IN; Process Example

If time (e.g., “mon_Time”) is a monitored variable in your CoRE behavioral model, you may choose
not to create an IN, process if you intend to use your run-time system to determine “current time” and
to implement periodic behavior. Examine the physical description of the monitored variable to make
your decision.

For each controlled variable in a CoRE behavioral model, use the inverse of the OUT value function,
OUT’, to define an OUT; process for each unique event used in the function. Each OUT; process
reacts to a stimulus by determining what the value of an output variable should be. Use the OUT’ value
function to specify the calculation of an output variable from controlled variable approximation(s).

The inputs to each OUT, process are approximations of one or more controlled variables; the output
is an output variable. Figure 15 shows an example where two OUT; processes are necessary because
two output variables are required to set the value of the controlled variable.

~con_ out_Output_ out_Output_
Controlled_ Variable_1 Variable_1
Variable = =

~eon_
Controlled_
Variable

Figure 15. OUT,; Process Example

It may be tempting to create a single process that performs the work of both the IN; and IN; processes,
i.e., one that responds to a stimulus indicating the need to retrieve an input variable and translate it
into the approximation of a monitored variable (i.e., a single IN process instead of separate INg and
IN; processes). Equivalently, the same temptation may exist to use a single process for translating an
approximation of a controlled variable into an output variable and sending the output variable to a
device (i.e., a single OUT process instead of separate OUT; and OUT; processes). The rationale for
maintaining this separation is illustrated in Figure 16, where the shaded ovals represent possible
temporal cohesion and the unshaded ovals represent sequential cohesion. It may seem unnecessary
to separate the INg_1 and IN;_1 processes in Figure 16 because of the obvious sequential cohesion.
However, there may also be temporal cohesion between pairs of processes, such as IN;_1 and INg_2,
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for which a greater benefit is obtained by clustering. Therefore, by adhering to the recommended
mapping, you allow more flexibility when making tradeoffs during process clustering (see Section 4.3).

Possible
Temporal
/~( Cohesion \,-\
Event_1 08 & \ :

~ Monitored_
Variable_1
4\ Sequential

Cohesion

Input_1

Input_1

~ Monitore
Variable_ 2

Event 2

Input_2

Figure 16. Rationale for Mapping to Initial Process Architecture

In Figure 16, temporal cohesion exists between INg_1 and IN;_2 if Event_1 = Event_2 or may exist
if both events are periodic. Temporal cohesion may also exist between IN;_1 and IN;_2 if temporal
cohesion exists between IN_1 and INg_2. Sequential cohesion always exists between the pairs (INg_1,
IN;_1) and (INg_2 and IN,_2).

An example of when it is beneficial to maintain the separation of INs and IN; processes is when the
approximation of a controlled variable performed by the IN; process is time consuming and the IN;
process must be able to handle bursts of interrupts. In this case, the IN; process is allowed to handle
the bursts of interrupts and the IN; process can perform calculations when the activity of the IN
process has slowed down.

4.1.4 REQ VALUE FUNCTIONS

Sections 4.1.2 and 4.1.3 described how to identify IN;, IN;, OUT;, and OUT; processes. This set of
processes is roughly the equivalent of the set of device interface processes described by the ADARTS
Guidebook. What remain to be identified are the internal environment-independent processes. The
shaded area in Figure 17 indicates the kinds of processes (including data stores) from the general
scheme that remain to be identified. This section describes how to identify the REQ orocesses.

REQ relations are specified in CoRE using event, condition, or selector tables. Map a condition table
or selector table to a single process activated periodically. For event tables, map each unique event
(see Section 2.6.2) to a process.

Each of these REQ processes represents a potentially concurrent transformation from
approximations of monitored variables to an approximation of a controlled variable. Section 4.1.4.1
describes how to derive processes in the initial process architecture from REQ value functions defined
by event tables. Section 4.1.4.2 describes how to derive processes from REQ value functions defined
by condition and selector tables.
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Input_Stimulus

Output_
Input_ Variable

Figure 17. General Scheme for Initial Process Architecture

4.1.4.1 Event Tables

Processes are derived from REQ value functions described in the form of event tables based on the
need to respond to distinct, potentially concurrent events. If the same event is identified more than
once in the REQ value function (i.e., they represent the same event occurring under different circum-
stances, such as in different modes), use a single process to respond to all occurrences of the event.
For example, @T(mon < 50) and @F(mon > 50) are the same event represented differently. On the
other hand, @T(mon > 0) and @T(mon < 10) are separate, distinct events (as are periodic events
with different periods or periodic events with the same period that are not in phase).

From the set of distinct events in an event table, identify those to which the software may be required
to respond concurrently (i.e., after one event occurs, the second event occurs, and the software must
be able to respond to the second event, even if it has not yet completed its response to the first event).
Consider multiple events to which the software can only respond sequentially as a single stimulus and,
therefore, a single process. For example, if two events are defined by a Boolean variable taking on the
values “True” and “False,” the responses to these events are not likely to be performed in parallel be-
cause a single instance of the Boolean variable is either “True” or “False” at any given point in time.
Also, events defined conditionally, such as “@T(C;) when C;” and “@T(C;) when C3” represent one
distinct event “@T(C;)” that can be handled by actions taken conditionally upon detection of the
event.

For each REQ value function defined by an event table, create one process for each of these distinct,
potentially concurrent events. These processes are called REQ processes. Each resulting REQ
process describes the actions performed in response to a distinct event and approximates the value
of a controlled variable from one or more approximations of monitored variables and terms and
modes. Then determine from REQ’ how each process approximates the value of a controlled variable.

In the HAS Buoy case study, there are two REQ relations that exemplify the derivation of processes
from event tables. In the REQ’ function for the approximation of con_Red_Light, there are two
different events: event_Red_Light_On and event_Red_Light_Off (see Figure 18), defined as follows:

event_Red_Light_On = @T(~mon_Light_Command = “Red_Light_On*)

event_Red_Llight_Off = @T(~mon_Light_Command = “Red_Light_Off”")
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There is no need to simultaneously turn the light on and off (because there is only one light); therefore,
only one process is necessary in the initial process architecture to handle both events. As illustrated
in Figure 19, the events are detected by receipt of Light_Command, and the need to turn the light on
or off is determined by looking at the value of Light_Command (either “On” or “Off”).

Event ~ con_Red_Light
ouempndupueefedupugapsbaier m uuapuupapapuiupupsgele
event_Red_Light On ”"On”
event_Red_Light Off "Off”

Figure 18. REQ’ Function for con_Red_Light

; ; Process_Red _ : Set_Light_
&fﬁ,ﬁﬂ? _?Ng . Light_Request Red_Light Switch_Value
™ Light_ (REQ) (OUTY
Command

Figure 19. REQ Process Process_Red_Light_Request

As another example, the REQ’ function for the approximation of con_Report contains five events:
event_Periodic_60_Second (occurs twice), event_Airplane_Detailed_Report_Request, event_Ship_
Detailed_Report_Request, and event_History_Report_Request, as illustrated in the Appendix. In this
case, four processes were created (see Figure 20):

* Generate_Periodic_Reports: Responds to both of the periodic events because:
— They are the same event.

— The responses cannot be carried out in parallel because the prerequisite for each of
the events is a particular mode (i.e., “mod_SOS” or “mode_Normal”) and the
software is only in one of the two modes at any given time.

*  Generate_History_Report, Generate_Ship_Detailed_Report, and Generate_Airplane_Detailed_Report:
Each of which responds to a particular kind of Vessel Request and may execute in parallel.

4.1.4.2 Condition and Selector Tables

REQ value functions defined by condition and selector tables typically represent periodic behavior
and should map to a single process that responds to periodic events. The resulting process calculates
the approximation of a controlled variable periodically. The frequency of activation for these
processes is derived from the frequency of the periodic event associated with the table.

Table 6 illustrates an example of a condition table defining a REQ’ function. Figure 21 illustrates how
the process derived from it may appear on the initial process architecture diagram, assuming a
requirement to modify the controlled variable every 10 seconds.
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Generate_ Generate_Ship Generate_Airplane Generate_
History_Report Detailed_Repo lﬁt‘:mled.Report Periodic_Reports
(REQ) (REQ) (REQ) (REQ)

Vessel_ Vessel
Request essel_

Request  Vessel_
/ Pl Request

/ Time_60

Report Report

Determine_ Report

Vessel_Request

(INY) Report Set_Outgoing_
Radio_Message_
Value (OUT))

Figure 20. REQ Processes Supporting REQ_Relation_for_con_Report
Table 6. Deriving Processes From Condition Tables
Mode ; Condition

m_Normal
mode_Degraded

Figure 21. Periodic REQ Process

4.1.5 MODE MACHINES

Create a process for each mode machine in the CoRE specification. These processes are called mode
processes, and their purpose is to track the current operating mode of the software and update it in
response to events as stipulated by the mode machine.

Figure 22 illustrates the mode machine from the HAS Buoy case study. Figure 23 illustrates the
process derived from the mode machine: it responds to the receipt of either of two kinds of messages
that may cause the system to change state. It passes state change information to
Generate_Periodic_Reports, the only process that is affected by state changes.

4.1.6 TERMS

Create a process for each term that is defined using an event. These processes are called term
processes. When the event occurs, the process calculates the value of the term, given the values of one
or more approximations of monitored variables or other terms. Do not create a process for a term
whose value is not calculated upon occurrence of an event.
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mode_SOS

event_Emergency_Button_Pressed

event_Reset_SOS

mode_Normal

Figure 22. HAS Buoy Mode Machine

Determine_
Reset_SOS

Reset_SOS

(INy Determine Generate_
System_Mode gem)dn'sc-REQ)
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Emergency_
Button

Determine _
Emergency_
Button (IN;)

Table 7 shows an example of a term defined by an event that implies the need for a process on the initial
process architecture diagram. Table 8 shows an example of a term defined using a condition table that
does not irmply the need for a process.

Figure 23. HAS Buoy Mode Process

Table 7. Term Defined by an Event

Event term_Average_Temperature

@T(mon_Average_Needed = “True”) [mon_Temperature(t) + mon_Temperature(t—30)] /2

Table 8. Term Defined by Conditions

Condition f term_Temperature_In_Raage

0°C < mon_Temperature < 100°C “True”
(0°C > mon_Temperature) OR (mon_Temperature > 100°C) “False”

4.1.7 DETERMINING THE NEED FOR INTERNAL DATA STORAGE

From the CoRE perspective, the need for internal data storage is a derived requirement identified
during software design. The general rule of thumb for identifying the need for data storage from CoRE
specifications is to look for references to the past found in value functions (delay terms are ignored).
Search the REQ, IN, and OUT value functions, variables, and terms for references to past values of
one or more monitored variables or terms. You should identify the content of each data store and the
number of copies of data that it contains. The data store contains the corresponding approximations
to monitored variables or terms.

R

|
]



4. Process Structuring

For example, the following terms from the HAS Buoy case study indicate the need for internal data
storage. Specifically, a data store containing six copies of mon_Air_Temperature data and a data store
containing 2,880 copies of term_Wind_and_Temperature_Report are needed.

term_Averaged_Air_Temperature =
ROUND [(SUM i: 0 <= i <= 5 : mon_Air_Temperature (t - 10 x 1)) / 6]

term _Weather_History_Report =
* The set of term Wind_and_Temperature_Report(i), where i = t-136_800,
t-136_740, ..., t (i.e., step by 60 seconds). That is, the
term_Wind_and_Temperature_Report at every 60 second interval over the
last 48 hours. *

4.2 SPECIFYING PROCESS BEHAVIOR

This section describes how to create process behavior specifications for processes in an ADARTS
initial process architecture derived from a CoRE software requirements specification. Section 8.13.2
of the ADARTS Guidebook describes how to describe processes using process behavior specifica-
tions. This section only provides guidance in developing those parts of the specification that are af-
fected by the use of CoRE for requirements analysis. The guidelines in this section are optional,
facilitated by the precision of CoRE and motivated by the goal of maintaining CoRE’s level of preci-
sion throughout design. You do not have to follow the guidelines in this section to produce an
ADARTS design from CoRE requirements. However, your design will benefit from precision if you
do follow these guidelines. The benefits of precision are described in Section 2.5.

In particular, the following parts of process behavior specifications 1re affected by the use of CoRE:
¢ Process logic (see Section 4.2.1)
* Process interfaces (see Section 4.2.2)

* Requirements traceability (see Section 4.2.3)

4.2.1 Process LoGic

This section describes a form of process logic: one that uses an abstract stimulus/response notation
describing process behavior on a thread-by-thread basis. The use of this form of process logic is not
required to build an ADARTS design irom a CoRE requirements specification, but it is recommended
because it allows you to maintain CoK Z’s precision in the process structure in an understandable and
unambiguous manner.

Section 4.2.1.1 introduces the stimulus-response notation. Section 4.2.1.2 describes an example of the
use of the stimulus/response notation. Section 4.2.1.3 provides some rationale for the use of this
notation.

4.2.1.1 Stimulus-Response Notation

Each process in the initial process architecture performs work when it responds to a stimulus. When
specifying process logic, create stimulus/response pairs, each of which defines the work performed by
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a particular process in response to a stimulus. By applying the guidelines in Section 4.1, you identify
processes and the stimuli that cause them to respond from the artifacts of a CoRE model. Table 9
identifies the stimuli that may cause each kind of process in the initial process architecture to respond.

Table 9. Process Stimuli

Process Relevant Artifacts Stimuli
IN input variable definition, IN’ value | External event (device interrupt), periodic event, or
function receipt of a message from another process

IN; IN’ Receipt of message from an IN; process

Mode Mode machine Periodic event or receipt of message from term or IN;
process

Term Term definitions Periodic event or receipt of message from mode or IN;
process

REQ REQ’ Periodic event or receipt of message from mode, term,
or IN; process

OUT, ourT Periodic event cr receipt of message from REQ process

OUT; output variable definition, OUT’ External event (device interrupt), periodic event, or
receipt of message from OUT; process

When specifying the responses to stimuli, be sure to use any NAT relations that are relevant to the
behavior you are specifying. The process behavior you describe should assume that every NAT rela-
tion holds true — there is no need to attempt to detect and react to violations of NAT relations. For
example, in the HAS Buoy case study in the Appendix, there is a NAT relation defining the bounds
of the monitored variable mon_Water_Temperature as follows:

-4 <= mon_Water_Temperature <= 100 (degrees Celsius)

Therefore, the IN; process that translates the value of in_Water_Temperature_Sensor into the
approximation of mon_Water_Temperature need not be concerned with values out of the specified
range.

The response portion of stimulus/response pairs is an ordered set of actions that describes when the
process interacts with devices, data stores, or other processes. The response must indicate the re-
sources, including process inputs and stored information, required to produce outputs. In general,
avoid describing the details of computations in process logic; you will encapsulate them in classes rath-
er than make them explicit in process behavior specifications. However, you should make clear the
dependencies between process inputs and outputs and computations performed by a process. That is,
be sure to identify:

* The process inputs required to perform each computation
* Which computation results are required to produce each process output

Recording this information helps to identify candidates for process clustering, evaluate expected
performance, and identify deadlock and race conditions.

The stimulus-response notation is an unordered list of stimulus/response pairs in the following form:
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Stimulus: S; when C;
S; when Cp

Sp when G,
Response: A

Az

Am
Each S; denotes a stimulus, whether it is an external or timer event or the receipt of a message. Each
G, if present, identifies a qualifying condition under which the stimulus may be recognized. A re-
sponse is specified as an ordered set of actions, with each action denoted by A;. The order of a set of
actions is significant in that it indicates the required order in which the actions must be performed
unless otherwise indicated. An action can be a computation, access to stored information, generation
of a message or external event, etc. If multiple stimuli appear in a single stimulus/response pair, the
action(s) will be taken upon recognition of any of the stimuli. It is not mandatory that a process provide
an externally visible response to each stimulus. For example, a stimulus may do no more than cause
a process to store some data locally.

The set of stimuli (S;) and actions (A;) should indicate all externally visible activity of a process —
evaluating a condition associated with an event should not require ainy externally visible activity (e.g.,
examination of data modified by other processes or interaction with other processes or the external
environment). If you omit a condition, it is assumed to be true (i.e., the stimulus is always recognized
and the actions always taken). If a stimulus occurs in a situation that satisfies the associated conditions
in two stimulus/response pairs, assume that only one of the action sequences (selected nondeterminis-
tically?) will be executed. Selection of a single response is necessary because two or more responses
may interfere with each other. Nondeterministic choice simplifies the notation by disregarding the or-
der of stimulus/response pairs. It has the additional advantage of not overly constraining the
impler..entor.

4.2.1.2 Process Logic Example

This notation describes process logic in terms of stimulus/response pairs that are similar in nature to
the precondition/postcondition pairs sometimes used to describe serial computations. This notation
is illustrated by applying it to the Generate_Periodic_Reports process of the HAS Buoy case study.
Every 60 seconds, this process generates a message representing a report that is passed to another
process for radio transmission. The generated message depends on the current operating mode of the
buoy:

¢ If the buoy is operating in “SOS” mode, the message contains an SOS signal and the current
buoy location.

e If the buoy is in “Normal” mode, the message contains weather information previously
obtained from external sensors and recorded in data stores by other processes.

In addition, this process reacts to the events that cause a mode change. Specifically:

2. “Nondeterministic” isnotthesameas “random.” “Random” choice of several possibilities means that each possibility has
roughlythesamechance ofbeingchosen. “Nondeterministic” choice meansthatthe designerdoes not care. The program-
mer (or run-time system) may make the choice in whatever way it pleases. Nondeterministic choice may be random, but
it does not have to be.
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¢ If the buoy is in “SOS” mode and a radio message requesting termination of transmission of
SOS signals is received, the current mode is changed to “mode_Normal.”

¢ If the buoy is in “Normal” mode and the emergency button is pressed, the current mode is
changed to “SOS.”

A summary of the stimulus/response specification for this process follows:

Stimulus: Time_60 (a timer event with a period of 60 seconds)

Response: If the buoy is in SOS mode, format and transmit an SOS message.
Otherwise, retrieve stored information about air temperature, water temperature,
wind direction, and wind magnitude (i.e., speed), format this information into a
Wind_and_Temperature_Report, and cause the report to be queued and transmitted.

Stimulus: Received a Mode_Change message

Respoase: If the buoy is in Normal mode and the Mode_Change message indicates that the
Emergency Button was pressed, change the mode to SOS.
Otherwise, if the buoy is in SOS mode and the message indicates that the Reset_SOS
radio message was received, then change the mode to Normal.

Section App.3.4.4 contains the detailed specification for the Generate_Periodic_Reports process.

4.2.1.3 Rationale

The stimulus/response notation is abstract and amenable to certain kinds of analysis (see Section 4.5).
The benefit of abstraction is that it discourages inclusion of irrelevant detail in the process logic. Cod-
ing details do not belong in process logic specifications because they distract the designer from impor-
tant design issues and constrain the programmer unnecessarily. You should make an effort to exclude
coding details from design specifications just as you try to exclude design information from
requirements specifications.

4.2.2 PROCESS INTERFACES

Identifying process interfaces for processes derived from an RTSA specification is straightforward:
you map them from data flows and control flows between transformations. When the initial process
architecture is derived from a CoRE specification, the mapping is not so straightforward. Typically,
a series of processes from the initial process architecture derived from a CoRE specification will take
the following form (as described in Section 4.1 and illustrated in Figure 6):

* External events (device interrupts or timer events) or messages from other processes cause
an IN; processes to sample the value of an input variable.

* Input variables are communicated via messages from INg processes to one or more IN,
processes.

* Approximations of monitored variables are communicated via messages from IN, processes
to term, mode, and/or REQ processes. Term processes produce terms and mode processes
produce modes that are passed on to REQ processes via messages.

* Approximations of the ideal values of controlled variables are communicated via messages
from REQ processes to OUT; processes.
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¢ Qutput variables are communicated via messages from OUT, processes to OUT; processes.

¢ Output variables are passed from OUT; processes to output devices. OUT; processes are
typically activated by incoming output variables in the form of messages, device interrupts, or
timer events.

Table 9 identifies the sources of relevant information in a CoRE model for each kind of process. Be
sure to identify and record the periodic and external events that cause processes to do work and record
them on the initial process architecture diagram and in process behavior specifications.

4.2.3 REQUIREMENTS TRACEABILITY

The specification of requirements traceability will differ when a CoRE specification is used in place
of an RTSA specification. When mapping to an initial process architecture from an RTSA specifica-
tion, processes trace back to data transformations and control transformations. When mapping to an
initial process architecture from a CoRE specification, processes trace back to CoRE artifacts accord-
ing to Table 9. Note that when Table 9 identifies the relevant artifact as IN’, OUT’ or REQ’,
requirements traceability is to the corresponding IN, OUT, or REQ relation of CoRE.

43 PROCESS CLUSTERING

The ADARTS process structuring criteria guide the software designer in clustering processes from the
initial process architecture to reduce the number of processes. This section describes how the use of
a CoRE software requirements specification affects application of the ADARTS process clustering
criteria and should be used in conjunction with Section 8.11 of the ADARTS Guidebook. There are
three kinds of ADARTS process structuring criteria:

¢ Temporal cohesion (Section 4.3.1)
* Sequential cohesion (Section 4.3.2)
* Functional cohesion (Section 4.3.3)

When you cluster processes, you need to combine the process behavior specifications for the clustered
processes. The logic of process behavior specifications identifies the stimuli that activate processes
and the action(s) they take in response. Each subsection describes how to modify the process logic for
clustered processes according to the clustering criteria applied.

4.3.1 TEMPORAL COHESION

Temporal cohesion exists for a set of processes when the processes are activated at the same time. You
may decide to cluster processes exhibiting temporal cohesion. There are two kinds of temporal cohe-
sion to consider: asynchronous and periodic. Asynchronous temporal cohesion (see Section 4.3.1.1)
exists for a set of processes when the processes are activated by the occurrence of the same periodic
stimulus. Periodic temporal cohesion (see Section 4.3.1.2) may exist between processes activated by
timer (periodic) events.

The criteria described in this section are not unique to clustering processes derived from a CoRE
specification; the criteria can be applied to an initial process architecture derived from an RTSA
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specification. However, CoRE’s precise notation for specifying events and its inclusion timing
information and frequency profiles related to events allow you to detect and measure temporal
cohesion more accurately.

43.1.1 Asynchronous Temporal Cohesion

Asynchronous temporal cohesion exists for a set of processes when the processes are activated by the
same periodic stimulus. The stimulus may be:

¢ An external event (device interrupt)
e The receipt of a message at the same time from another process

The existence of asynchronous temporal cohesion is easily identifiable: two processes are temporally
cohesive if each process responds to the same message from a third process or the same event from
the external environment. If there is no such common input message or event, asynchronous temporal
cohesion does not exist between the processes.

To combine the process behavior specifications of two processes exhibiting asynchronous temporal
cohesion, interleave3 the actions of the response associated with the common stimulus of each pro-
cess. You should determine and specify whether or not the order in which the actions are performed
is significant when combining stimulus-response pairs.

Figures 24, 25, and 26 illustrate examples of the application of asynchronous temporal cohesion from the HAS
Buoy case study. Figures 24 and 25 show the process behaviors for Monitor_Location_Correction_Data and
Monitor_Incoming_Radio_Messages, respectively. Note that both processes are activated by the detection of
the external event Receiver_Interrupt. Figure 26 shows the process behavior for the process that resulted
after clustering.

Stimulus

! Read (RegisterF)

1 if (RegisterF.Byte_1 = 16#07#) then
received Receiver_Interrupt H Location_Correction_Data.u <—— RegisterF.Byte_2
! Location_Correction_Datal <-—— RegisterF.Byte_3
1
1]

send Location_Correction_Data to Determine_Omega_Error

Figure 24. Monitor_Location_Correction_Data Process Behavior

Stimulus Response
Read (RegisterF)
case RegisterF.Byte_1 is
when 16#01# =>
received Receiver_Interrupt Incoming_Radio_Message.Byte_1 <—-— "Red_Light On”
send Incoming_Radio_Message to Determine_Light Command
when 16#02# =>
—— some logic has been omitted for brevity

Figure 25. Monitor_Incoming_Radio_Messages Process Behavior

3. “Interleave” means to “combine in arbitrary order,” not necessarily to “intersperse.” The actions of the second process
may follow all of the actions of the first process.
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Stimulus Response

Read (RegisterF)
case RegisterF.Byte_1is
when 16#01# =>
Light_Switch <= = 2#1xo0000#
write Light_Switch to RegisterH
ived Recei when 16#02# =>
recenve iver_Interrupt - — some logic has been omitted for brevity

when 16#07# =>
Omega_Error <—— (Lat_Offset <= RegisterF.Byte_2,
Lon_Offset <= RegisterF.Byte_3)
send Omega_Error to Omega_Queue

Figure 26. Process_Receiver_Interrupt Process Behavior

4.3.1.2 Periodic Temporal Cohesion

Periodic temporal cohesion may exist between processes activated by timer (periodic) events. Unlike
asynchronous temporal cohesion, there are varying degrees of periodic temporal cohesion. The great-
est degree of periodic temporal cohesion exists between two processes when the periods of the pro-
cesses are equal and in phase (e.g., each process has a period of 10 seconds, beginning at time tg). This
section describes how to measure periodic temporal cohesion. The guidelines in this section are an
optional enhancement to the guidelines in the ADARTS Guidebook. You do not have to follow the
guidelines in this section to produce an ADARTS design from CoRE requirements; however, if you
do, you will have a more complete understanding of your process structure.

The most efficient use of a single timer event to activate a set of periodic processes that are in phase
can be calculated by determining the greatest common divisor (GCD) of the periods (the period of
process P is given by t(P)) of the processes (GCD(t(P)), t(P2))), where P, and P; are the periodic pro-
cesses under consideration. If you cluster a pair of periodic processes, you can obtain the same func-
tional behavior by triggering the clustered process at a rate equal to the GCD of the periods of the
clustered processes. The greatest degree of temporal cohesion exists between periodic processes Py
and P, when GCD(t(P,), t(P2)) = t(P1) = t(P2) (i.e., when the processes have equal periods).

However, it may be beneficial to cluster processes with different periods. In this case, GCD(t(P;),
t(P2)) = t(P1) = t(P2) does not hold, implying that there may be situations in which the clustered pro-
cess will have nothing to do when it is triggered. When you cluster procasses with different periods,
you should try to maximize the number of times the clustered process does work in response to a timer
event (as opposed to responding to the timer event by doing nothing). Let:

Pr(P1) be the probability that process P1 of the cluster will do work in response to a timer event
Pr(P2) be the probability that process P2 of the cluster will do work in response to a timer event

Pr(P1 and P2) be the probability that both P1 and P2 will do work in response to the same timer
event

Pr(P1 or P2) be the probability that either P1 or P2 will do work in response to the same timer event
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When you select periodic processes (P1 and P2) to cluster, you want to maximize the frequency with
which the clustered process will do work in response to the timer event. That is, you want to maximize:

Pr(P1 or P2) = Pr(P1) + Pr(P2) - Pr(P1and P2)

The ADARTS Guidebook states that sequentially cohesive processes cannot be clustered using
temporal cohesion. If there is no sequential relationship between P1 and P2, then the probability that
one will do work in response to a timer event is independent of the probability that the other will do
work in response to the same timer event. Because the individual probabilities are independent,
Pr(P1and P2) = Pr(P1) Pr(P2) holds. From the discussion above,

GCD(t(P1), t(P2))
t(P1)

GCD({t(P1), t(P2))
t(P2)

Pr(P1) = and Pr(P2) =
implying that the probability of the clustered process doing work in response to a timer event with
period ged(t(P1), t(P2)) is

GCD(t(P1),t(P2)) GCD(t(P1),t(P2)) _ GCDt(P1), t(P2))

For example, consider periodic processes Py and P, with t(P;) = 60 ms and t(P2) = 40 ms, implying
that GCD(t(Py), t(P2)) = GCD(60, 40) = 20. Therefore, Pr(P; and P;) = 20/60 + 20/40 — 400/2400
= 1/3 + 1/2 - 1/6 = 67%, meaning that if P, and P; are clustered into a periodic process triggered
every 20 ms, 67% of the periodic events would cause the process to do work.

For another example, consider processes Py and P, with t(P;) = 10 ms and t(P;) = 20 ms, implying
that GCD(t(Py), t(P2)) = GCD(10, 20) = 10. Therefore, Pr(P; and P3) = 10/10 + 10/20 — 100/200
= 1/1 + 1/2 - 1/2 = 100%, meaning that if P; and P; are clustered into a periodic process triggered
every 10 ms, every periodic event would cause the process to do work. This is an example of the
greatest degree of periodic temporal cohesion possible.

The discussion and examples above assume that processes P1 and P2 are in phase. It is possible for
two processes to have the same periods but different phases. For example, the timer event for process
P1 could be

@T(mon_Time mod 10 ms :- 5 ms)
and the timer event for process P2 could be
@T(mon_Time mod 10 ms = 0 msand mon_Time # 0 ms)

In this case, the timer events of interest to each of the two processes are as follows:

Pl Sms, 15ms, 25ms,...
P2: 10ms, 20 ms, 30 ms,...

This implies that the clustered process should have a period of 5 ms rather than 10 ms and that Pr(P1
and P2) will be 50% rather than 100%.

To combine the process behavior specifications of two processes with the same period, interleave the
actions of the response associated with the periodic event in each process. You combine the process
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behavior specifications in the same way you do for asynchronous . .;iporal cohesion, except that the
stimulus is a periodic event (e.g., @T[mon_Time mod 60 seconds = 0]) rather than asynchronous.

If you cluster processes based on periodic temporal cohesion where the periods of the processes are
not equal, it may be necessary to make the responses of the processes conditional. You should deter-
mine and specify whether or not the order in which the actions are performed is significant when
combining stimulus-response pairs.

Figures 27, 28, and 29 illustrate examples of the application of periodic temporal cohesion for two
processes with different periods. Figures 27 and 28 show the process behaviors for processes activated
at 10-second and 20-second intervals, respectively. Figure 29 shows the process behavior for the
process that resulted after clustering.

Stimulus Response

Heat_Sensor <- Read (Port_2)

when Time_20 send Heat_Sensor

Figure 27. Process Behavior for a 20-Second Periodic Process

Stimulus Response

Water_Pressure_Sensor <— Read (Port_1)

when Time_10 send Water_Pressure_Sensor

Figure 28. Process Behavior for a 10-Second Periodic Process

Stimulus Response

Water_Pressure_Sensor <~ Read (Port_1)
send Water_Pressure_Sensor

when Time_10 every alternate interval

Heat_Sensor <— Read (Port_2)
send Heat_Sensor

Figure 29. Process Behavior for the Clustered Periodic Process

4.3.2 SEQUENTIAL COHESION

Sequential cohesion exists between two processes when the stimulus activating one process results
from an action performed by the other process. You may decide to cluster processes exhibiting
sequential cohesion. In addition to reducing the number of processes (and the inherent overhead),
clustering based on sequential cohesion reduces the number of messages communicated between pro-
cesses. An example of sequential cohesion is when one process is activated upon receipt of a message
from the other (e.g., an OUT process responds to the receipt of the value of an output variable from
an OUT; process).

Assume that two processes, Py and P, exhibit sequential cohesion because the stimulus that activates
P, is a receipt of a message from P;. To combine the process behavior specifications of P; and P,
interleave the actions of P, with those of P, beginning with the action that causes the stimulus
activating P,. If clustering makes the activating action unnecessary, remove it from the list of actions.
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Figures 30, 31, and 32 illustrate an example of the application of sequential cohesion from the HAS Buoy
case study. Figures 30 and 31 show the process behaviors for Set Light Switch Value and
Control_Light Switch, respectively. Note that the message Light_Switch is sent from Set_Light_Switch_Value
to Control_Light_Switch, causing it to respond. Figure 32 shows a portion of the process behavior for the
process that resulted after clustering (additional clustering based on sequential cohesion is reflected in
this process logic).

-1

P i S

Stimulus Response

if (RedLight = "On”) then
Light_Switch <—— 2# 1ooocoo#

elsif (RedLight = "Off”) then
Light_Switch <—— 2#0x00000#

send Light_Switch to Control_Light_Switch

received Red_Light

Figure 30. Set_Light Switch_Value Process Behavior

received Light_Switch write Light_Switch to RegisterH

-y oy - - o
-y - - o

Figure 31. Control_Light_Switch Process Behavior

Stimulus Response

Read (RegisterF)
case RegisterF Byte_1is
when 16#01# =>
Light_Switch <~ — 2#100000c#
write Light_Switch to RegisterH
when 16#02# =>

received Receiver_Interrupt Light_Switch <~ — 2#0x0000x#
write Light_Switch to RegisterH
when 16#03 =>

~~— some logic has been omitted for brevity

Figure 32. Process_Receiver_Interrupt Process Behavior

4.3.3 FuncTIONAL COHESION

When the application of the process clustering criteria based on temporal and sequential cohesion
does not reduce the initial process set to a small enough size, you may cluster processes exhibiting
functional cohesion. Use the guidelines for clustering processes based on functional cohesion as
specified in the ADARTS Guidebook.

To combine the process behavior specifications of two processes exhibiting functional cohesion,
either:
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e Use multiple stimulus/response pairs to specify process logic

e Use a single stimulus/response pair with a conditional response

Figures 33, 34, and 35 illustrate an example of the application of sequential cohesion from the HAS
Buoy case study. Figures 33 and 34 show the process behaviors for Generate_History_Report and
Generate_Ship_Detailed_Report, respectively. Figure 35 shows a portion of the process behavior for

the process that resulted after

clustering.

received (Vessel_Request =
"History_Report_Request”)

Report.Report_Type <—~— "Weather_History Report”

Report.ASCII_Report < —— read Weather_History_Report from
the Report_History data store and convert to ASCII

send Report to Set_Outgoing_Radio_Message_Value

Figure 33. Generate_History_Report Process Behavior

Stimulus

Response

received (Vessel Request =

”Ship_Detailed_Report_Request”) calculate term_Averaged_Water_Temperature

Report.Report_Type <—— “Ship_Detailed_Report”
Buoy Location <—— get Buoy_ tion
read Water_Temperature values from Water_Temperature data store

read Air_Temperature values from Air_Temperature data store
~— some Jogic has been omitted for brevity

send Report to Set_Outgoing_Radio_Message_Value

Figure 34. Generate_Ship_Detailed_Report Process Behavior

Stimulus

received Vessel_Request

get next Vessel_Request from Request_Queue
if (Vessel_Request = "History_Report_Request”) then
Report.Report_Type <—— "Weather_History_Report”
Report.ASCII_Report <-— read Weather_History_Report from
s the Report_History data store and convert to ASCII
else
Buoy_Location <—- get Buoy_Location
read Water_Temperature values from Water_Temperature data store
calculate term_Averaged_Water_Temperature
read Air_Temperature values from Air_Temperature data store
~— some logic has been omitted for brevity

Report.Report_Type <—— "Ship_Detailed_Report”
send Report to Report_Queue

Figure 35

. Generate_Detailed_Reports Process Behavior

4.4 PROCESS COMMUNICATION AND SYNCHRONIZATION

When you mapped from a CoRE specification to an initial process architecture, only data

dependencies were recorded (e

.£., IN; processes depend on INg processes to supply the values of input
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variables). After process clustering is completed, you need to identify how processes communicate
and synchronize. For example, you need to identify the processes that initiate message communica-
tions and how message communication is managed. Use this section with Sections 8.12 and 3.4.1 of
the ADARTS Guidebook.

For each data dependency between processes, choose one of the four kinds of message
communications specified by ADARTS:

¢ Tightly coupled with reply

e Tightly coupled without reply

e First-in, first-out (FIFO) queue
¢ Priority queue

Also, be sure to record the periodic and external events that cause processes to respond and the data
flows representing data communicating with devices on the process architecture diagram and in
process behavior specifications.

If a process consumes multiple kinds of messages, consider using a single message communication
mechanism, such as a FIFO queue, for communicating all of the messages.

Determine whether all message communications are really necessary. For example, if a periodic IN
process passes an input variable to an IN; process, consider only passing the message when:

¢ The value of the input variable changes
e The IN; process or a REQ process determines that an updated variable is needed

Subsequent ADARTS activities take into account process logic to optimize the message
communication that can reduce the necessary frequency of periodic events. For example, it may be
found that an INg process that polls an input variable frequently to estimate the latest value of a moni-
tored value may actually need only to respond to an infrequent request for that monitored variable
from another part of the system.

4.5 EVALUATION CRITERIA

This section describes how you can evaluate an ADARTS process architecture built from a CoRE
software requirements specification. Section 4.5.1 describes how to evaluate process behavior specifi-
cations recorded using stimulus/response pairs. Section 4.5.2 describes how to evaluate the timing
characteristics of the design. Section 4.5.3 describes how to evaluate the correctness of the design.

As with the enhanced guidelines described in Section 4.2 for specifying process behavior, these
guidelines are optional enhancements to the ADARTS method. You do not have to follow the guide-
lines in this section; however, you should strongly consider following these guidelines to have more
confidence in your process architecture.

4.5.1 EVALUATING PROCESS BEHAVIOR SPECIFICATIONS

You can perform two common analyses using the notation described in Section 4.2.1.2: detection of
potential blocking and nondeterminism. To detect potential blocking, collect all stimulus/response
pairs for a single stimulus:
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Stimulus: E when C,

Stimulus: E when Cn

Ensure that the expression Cj or. . . or Cy is always true (i.e., true for any assignment of values to
variables). The stimulus E will not be recognized when the expression not (C; or . . . or Cy) holds. If
E refers to an external event, it will be lost; if E refers to an input message obtained via tightly coupled
communication, the sending process will be blocked, possibly forever. This analysis is similar to the
Completeness Criterion for classes described in Sections 5.3.1 and 5.3.2.

To detect nondeterminism, ensure that the conjunction of any two conditions for the same stimulus
is always false (i.e., any combination of values for the variables named in the pair of conditions C;, G;
results in C; and C; = false). If this is not the case, e.g., if you find two stimulus/response pairs

Stimulus: E when C;
Response: A;j

Stimulus: E when C;

Response: A;
and there is a situation where C;and C; holds, then the implementor (or possibly the run-time system)
must determine which action will be taken. Such nondeterminism is not always bad, but you should
evaluate it to determine if it is really desirable. This rule is similar to the determinism criterion for
classes described in Section 5.3.3.

4.5.2 EVALUATING TIMING CHARACTERISTICS

Timing analysis can become very complex. Worst case performance is usually assumed to simplify the
analysis at the expense of fixing performance problems that may not exist. This section illustrates the
kinds of analysis that are possible when the formalisms of CoRE have been used in an ADARTS
design.

In the worst case scenario, the frequency of all events is assumed to be at the maximum and the delay
of every device and process is at its maximum. When the worst case delay of the input devices, soft-
ware, and output devices is less than the tolerable delay, the design satisfies the timing requiicments:

Input device delay + software delay + output device delay < tolerable delay

However, this analysis assumes that the delay introduced by the devices and the software is linear, i.e.,
does not depend on the values of variables. This is the simplifying assumption made in CoRE case
studies and used in the case study for this report. A more complex analysis would express the delay
of each device and process as a function of the inputs and state of the system.

In practice, each stimulus response thread is evaluated to make sure it meets the timing constraint.
Each unique event found in the REQ value functions defines the stimulus in a stimulus response
thread. For example, in Section App.2.11.1 of the HAS Buoy case study, when event_Periodic_60_
Second occurs while INMODE(mode_SOS), the software must broadcast an SOS report. Given a set
of priorities, system load, etc., the delays that should be considered include:

® Processing the timer event. There is delay when the operating system wakes up the Generate_
Periodic_Reports process (see Section App.3.4.4) or when processing an interrupt from an
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external timer. There is also delay if the process is currently handling another stimulus
(Mode_Change). Calculate the worst case.

e Setthe report type, read Buoy_Location (consider the worst case, could be blocked by another
process), format report, and send report to Report_Queue.

e Interprocess communication between Generate_Periodic_Report and Transmit_Reports,
including the worst case length of the Report_Queue and the time to prioritize the queue.

e Worst case time for Transmit_Reports to complete sending any page it is in the middle of
transmitting.

¢ Time for Transmit_Reports to create a one-page Outgoing_Radio_Message and write it to the
output register.

¢ The delay introduced by the transmitter device.

Because all the processes in this stimulus response thread run at the highest priority and the message
is prioritized to be the highest, the effects of system load are reduced. Of course, other stimulus re-
sponse threads should be evaluated to see if this higher priority thread causes other deadlines to be
missed.

4.5.3 CORRECTNESS

This section does not represent a formal system for proving correctness (4..uch is beyond the scope
of the report). The example is a walkthrough suggesting a more rigorous definition of correctness
based on the precision of process behavior specifications derived from CoRE requirements. Delay is
ignored in this example to keep it manageable. Section 4.5.2 suggests the kind of timing analysis that
would likely go along with this analysis of correctness.

First, identify a behavior to verify for correctness. For example, in the HAS Buoy case study, Section
App.2.11.1, according to the REQ_relation_for_con_Report, the event_Periodic_60_Second
(Section App.2.6) when INMODE(mode_SOS) generates an ASCII report of type SOS_Report:

Assume:
[mon_Time MOD 60 seconds] = 0and
INMODE(mode_SOS)

Prove:
con_Report.Report_Type = “SOS_Report” and
con_Report. ASCII_Report = ASCII(term_SOS_Report)

An obvious simplification is helpful: term_SOS_Report consists of only one element,
mon_Buoy_Location. Instead, prove:

con_Report.Report_Type = “SOS_Report” and
con_Report.ASCII_Report = ASCII(mon_Buoy_Location)

Look for relevant functions and operations that can be used to verify this relation. A good starting
place is any process derived from the REQ_Relation_for_con_Report. Section App.3.4.4 describes
the Generate_Periodic_Reports process.
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Look at INMODE(mode_SOS) and attempt to derive the value of System_Mode. A quick check of
the mode machine for HAS_Buoy in Section App.2.7.1 shows that InMode(“mode_SOS”} can only
occur after event_Emergency_Button_Pressed and before event_Reset_SOS. The input device for
mon_Emergency_Button, in Section App.2.13.1, is an active device generating an interrupt and a val-
ue of 2#Ixcocox# for in_Button_Indicator. The process Monitor_Emergency Button, in Section
App.3.4.6, responds to the stimulus by sending a message to Generate_Periodic_Reports,
Emergency_Button = “Pressed.” A systemwide check reveals that the only other way a message to
change the mode can be generated is when event_Reset_SOS occurs. But as indicated,
InMode(“mode_SOS”) precludes this between the event_Emergency_Button and the current time.

According to the logic of the Generate_Periodic_Reports process and the conclusion abou messages
received, the last response to set System_Mode was:

if (System_Mode = “mode_Normal”) then
System_Mode <—-— “mode_SOS”

Therefore, because there are only two possible values for System_Mode, System_Mode =
“mode_SOS.”

Looking at the definition for Time_60 and the assumption {mon_Time MOD 60 seconds] = 0,
you can conclude that the stimulus, when Time_60, occurs shortly after the event_Periodic_50_Second.
According to the process logic of Generate_Periodic_Reports, the response to this event should be:

Report.Report_Type <—-“SOS_Report”
SOS_Report <——read Buoy_Location data store
Report.ASCII_Report <——ASCII(SOS_Report)
send Report to Report_Queue

An evaluation reveals that the Buoy_Location has been updated sometime within the last 30 seconds.
Because the buoy does not change location quickly (Section App.2.10.2), ignore the age of the location
data and conclude that the Report_Queue now contains a report with the following values:

Report = (“SOS_Report,” ASCIH(Buoy_Location))

Following the trail (i.e., stimulus/response thread) shows that the process Transmit_Reports in
Section App.3.4.7 takes reports from the Report_Queue. Because the queue is prioritized and
SOS_Reports get highest priority, assume (as opposed to doing throughput analysis) that no other
SOS_Reports are on the queue and this is the next one processed.

With a little detailed evaluation of the process logic, the Page_Count = 1 and

write Outgoing_Radio_Message to RegisterG, where
Report_Code <—— 2#10000001#
Page_Count <—-2#00010001#
Bytes_3—512 <—~— ASCII(Buoy_Location)

Finally, the transmitter described in Section App.2.11.2 sends the report:

con_Report.Report_Type = “SOS_Report” and
con_Report. ASCII_Report = ASCII(mon_Buoy_Location)
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4.6 FUTURE WORK

There is still a great deal of potential in several areas to exploit the precise specification of behavior:

The attempts at verification, although more rigorous, are still not formal. The initial work in
Section 4.5 shows promise.

There may be more analytical approaches to deriving ADARTS stimuli from CoRE events.
These approaches could begin with the initial mapping and proceed through the design activity
with correctness preserving transformations (siwnilar to the way process clustering is applied).
Moving stimuli from one process to another with appropriate updates to process logic and
message communicz tion is possible.

Further work will allow development of guidelines for allocating timing requirements derived
from timing requirements associated with REQ relations to a series of IN;, IN,, REQ, OUT,,
and OUT; processes that make up a stimulus response thread.




5. CLASS STRUCTURING

In the class structuring activity, you develop the static view of the software design. To begin class
structuring, you should have a complete CoRE specification for software requirements, descriptions
of customer-mandated external systems, and a knowledge of the implementation environment. You
will use this information to perform the activities in class structuring. As you apply the guidelines in
this section, you should think carefully before mapping requirements in different CoRE classes to the
same ADARTS class because the requirements are likely to change independently of each other.

5.1 DERIVING CLASSES

Table 1 is an overview of how you form the abstractions that form the basis for ADARTS classes. The
abstractions are described in detail in Section 11.4 of the ADARTS Guidebook. Classes are derived
from variables (e.g., monitored and controlled) and from relations (e.g., REQ and NAT). In general,
you will use variables and terms to derive data abstraction and collection classes and IN and OUT
relations to derive device interface and external system classes. The following subsections describe
how you derive ADARTS classes from these parts of the CoRE behavioral model.

5.1.1 DEVICE INTERFACE CLASSES

Create one device interface class for each unique kind of device with which the software will interface.
Devices are mentioned in the definitions of input and output variables, which appear in CoRE
boundary classes. Map each input variable and output variable to a device interface class. The
mapping will not be one-to-one for cases in which a single device is associated with multiple input or
output variables. You should use the guidelines described in this section with Section 9.4.1 of the
ADARTS Guidebook.

You should create one object for each device that will be controlled by the software. There will be at
least one object for each device interface class. There will be multiple objects for the same class if there
are several devices of the same type.

Table 10 summarizes the services encapsulated by device interface classes. In general, you will create
one operation for each activity. If a device interface class contains operations to approximate
monitored variables or output variables, it should have separate operations to read input variables
from the device or to write output variables to the device. These operations should remain separate
because of the possibility that they will be invoked by different processes.
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Table 10. Activities Encapsulated by Device Interface Classes
Service Encapsulated in Device Interface Class
Read input variables Always
Write output variables Always
Operate the device Always
Approximate monitored variables from input If all inputs for a monitored variable come from the
variables same device and there is no need to store a
collection
Generate output variables from approximations of | All outputs for a controlled variable go to the same
controlled variables device and there is no need to store a collection

Do not include translation of input variables to monitored variable approximations or output
variables from controlled variable approximations unless the resulting class will be cohesive and
understandable. Use a computation class for the translation if you do not include it in the device
interface class.

You should consider possible changes before you use a single class to interface with a device and
approximate monitored variables. For example, in the HAS Buoy case study, water temperature is
calculated by the Water Temperature Comp Class instead of the Water Temperature Device Interface
Class because the number of water temperature sensors may change in the future. On the other hand,
the number of air temperature sensors is not expected to change, so approximation of the Air
Temperature Sensor monitored variable is performed by the Air Temperature Sensor Device
Interface class (see Figure 36).

You should also be certain that a device interface class does not encapsulate multiple concerns. For
example, if the algorithm for computing air temperature was sufficiently complex, you could
reasonably consider it a concern separate from operating the air temperature sensor device. In this
case, you would encapsulate the algorithm in a separate computation class, even if the number of
devices and the algorithm were not expected to change independently.

Examples of device interface classes appear in Ficure 36.

5.1.2 EXTERNAL SYSTEM CLASSES

Create an external system class to encapsulate details of interfaces between your system and other
hardware/software systems mandated by the requirements as described in Sections 9.4.2 and 5.1.1.2
of the ADARTS Guidebook. The definitions of input and output variables, which appear in CORE
boundary classes, will indicate if they are produced or consumed by external systems. Textual
annotations will indicate if any of the expressions in REQ, IN, and OUT tables are to be computed
by external systems.

5.1.3 DATA ABSTRACTION CLASSES

Data abstraction classes encapsulate concerns related to the representation of data. Use this section
with Section 9.4.3 of the ADARTS Guidebook. You should map each monitored variable, controlled
variable, input variable, and output variable to a data abstraction class. The mapping usually is not
one-to-one; variables of the same type will be mapped to the same class unless you expect the types
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mon_Wind_Magnitude

Air

mon_Air _Temperature Interface

mon_Wind_Direction

Requirements (partial)
AirTemperature Wind Sensor Wind Computation
Sensor Device Device Interface
Interface
Read Air Temperature Sensor Read Wind Sensor Input Calcul:llte Wind Direction
1
Calculate Air Temperature Calculate Wind Magnitude
Monitored Variable Approximated Monitored Variable Approximated
by Device Interface Class by Computation Class

Figure 36. Examples of Device Interface Classes

to change independently. If a variable is of a collection type, you will map it to a collection class (to
encapsulate concerns about the collection as a whole) and to a data abstraction class (to encapsulate
concerns about one member of the collection).

You should consider mapping each term to a data abstraction class. However, it is not necessary to
create a data abstraction class for every term. Terms are included in the CoRE method for the
convenience of the requirements analyst. A term is simply a named expression. A very simple term
(such as the inverse of a monitored variable) could be mapped to an operation on an existing class
(such as the data abstraction class for the monitored variable). A term representing a complex
computation (such as a trigonometric function) could be mapped to a computation class.

Recall that envircnmental variables are defined in CoRE boundary and term classes. Terms can be
defined in CoRE boundary, term, and mode classes. These are the CoRE classes that contain the
requirements you use to define ADARTS data abstraction classes.

A data abstraction class is associated with a single copy of some type of information; you use data
collection classes (see Section 5.1.4) to represent collections of two or more items of information. For
example, the HAS Buoy case study requirements define term_Averaged_Water_Temperature as the
arithmetic average of the past six water temperature readings. The collection of readings would be
mapped to a data collection class; you would form a data abstraction class for individual water
temperature values.

Create one or more data abstraction classes for each unique value type associated with a variable or
term in the CoRE specification. If two CoRE variables are of the same type but you expect their types
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to change independently, create separate data abstraction classes. If the value type is composed of a
collection of identical simpler types (e.g., a set of sensor readings), create a data abstraction class for
the simple (i.e., single-valued) types and a data collection class for the collection. If two variables have
the same type but you expect the types to change independently, create a data abstraction class for
each. If the variables are of a collection type, create two data abstraction classes if you expect the
underlying single-valued types to change independently.

Note that a single-valued type may be decomposable into several atomic values. For example, the
input variable in_Wind_Sensors has four atomic values (i.e., the sensor readings for the north, south,
east, and west wind sensors). In general, you should map such a type to a single data abstraction class
providing operations to set and retrieve individual atomic values. If you expect some of the atomic
values to change independently of others, you may choose to map the attributes to separate classes.

When developing data abstraction classes, you should remember that the types and units associated
with variables and terms in a CoRE specification are not requirements and you are free to use
different types and units in the design. For example, you could represent ~ mon_Water_Temperature
in degrees Fahrenheit even though mon_Water_Temperature is expressed in degrees Celsius.

Create one object for each approximation (e.g., ~ mon_Wind_Speed) that the software will maintain.
For approximations that are collections, you will create an object for the entire collection and one or
more objects for single elements of the collection.

To determine the operations on a data abstraction class, examine the expressions in which the
corresponding variables appear. Expressions appear in REQ, IN, and OUT relation tables and in term
definitions. You may choose to create operations specifically for simple expressions, such as
increment and decrement. If an expression is complex or requires an algorithm that is subject to
change (such as an iterative approximation algorithm), consider mapping the expression to a separate
computation class (see Section 5.1.7). You may choose to create a computation for part of an
expression (such as a trigonometric function) and establish a dependency between the data
abstraction class and th. computation class. If two or more variables are mapped to the same data
abstraction class and the expressions are significantly different, you may want to consider mapping the
variables to separate data abstraction classes.

Figure 37 contains an example of two sets of similar requirements and the corresponding data
abstraction classes. Both air temperature and water temperature are provided by the environment and
averaged over a period of time. In each case, the monitored variable containing a single temperature
reading and the term representing the average are mapped to the same data abstraction class.
However, it is possible that the range of values, precision, or other characteristics of the two
temperatures will change independently, necessitating separate classes.

In Figure 38, mon_Buoy_Location is an example of a variable whose value is composed of two atomic
values (latitude and longitude). The data abstraction class created for mon_Buoy_Location has
separate read and set operations for latitude and longitude.

5.1.4 DATA COLLECTION CLASSES

Certain requirements are stated in terms of collections (e.g., sets, sequer~ ° of values of the same
type. For example, in the HAS Buoy case study, the terms for averaged air ter temperature and
average wind direction and magnitude (speed) are defined as arithmetic av. _.s of multiple samples
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mon_Water_ term_Averaged_Water_

Temperature

>

Requirements (partial)
Air Temperature Water Temperature
Data Abstraction Data Abstraction
Set Set
[ArithmeticOperations I [ArithmeticOperations I
Mapping to Classes

Figure 37. Example of Data Abstraction Classes

Air
Interface

mon_Buoy_
Location

mon_Buoy_

Requirements (partial)

Buoy Location
Data Abstraction

Set Longitude

Read Longitu:.

Read Latitude

Mapping to Data Abstraction Class

Figure 38. Example of Data Abstraction With Multiple Atomic Values

of the values of the corresponding monitored variables. Search through the REQ, IN, and OUT
relations in CoRE boundary classes for expressions that refer to sets, sequences, or other collections.
Often, these expressions will refer to collections of monitored variables or terms taken over a period
of time. You should also look for these expressions in the definitions of terms, which can appear in
CoRE boundary and term classes. Map each such expression to a data collection class, which will
export operations on the collection as a whole. Examples of operations are iterating (i.e., examining
the collection one item at a time), sorting the collection, and searching for items with specific
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properties. A collection class deals with the entire collection; you will create a data abstraction class
(see Section 5.1.3) to deal with individual items in the collection. As described in Section 9.4.4 of the
ADARTS Guidebook, ADARTS maintains a separation of concerns between data abstraction and
collection classes because they can easily change independently of each other.

To find expressions that refer to collections, look for set operators, such as summation (“SUM?” in the
HAS Buoy case study), or for direct references to sets (e.g., “{i: 0< =i<=5: mon_Temperature(i)}”).
For example, term_Averaged_Air_Temperature, illustrated in Figure 37, is defined with the following
expression:

ROUND{ (SUM(1i:0<=i<=5:mon_Air_Temperature(t - 10-i))} / 6]}

The parameter t refers to the current time. The entire expression refers to the set of six values of the
monitored variable mon_Air_Temperature, sampled at intervals of 10 seconds, with the most recent
sample being the current value of mon_Air_Temperature. The significance of this expression for Class
Structuring is that the software must maintain a collection of historic values of mon_Air_Temperature
to approximate term_Averaged_Air_Temperature?. The collection class corresponding to this
expression is shown in Figure 39.

Air Temperature
Readings Collection

I Record Air Temperature I

[ Compute Average Air Temperature |

Figure 39. Collection Class for Air Temperatures

Map to a collection class each variable, term, or expression that implies need for a collection of similar
items. Collection classes may be required for inputs and outputs as well as monitored and controlled
variables, e.g., input data read in bursts and the input variable defined as a sequence of values.

Create an object for each collection, not for each item in each collection.

5.1.5 STATE TRANSITION CLASS

An ADARTS state transition class (see Section 9.4.5 of the ADARTS Guidebook) hides the contents
of a CoRE mode machine. Mode machines are defined in CoORE mode classes. You should map to
a state transition class each unique mode machine in the requirements specification. (Two mode
machines are identical if their definitions are the same.) Each mode associated with the mode
machine becomes a state of each object derived from state transition class. The possible changes to

4. Theexpression defines the value of term_Averaged_ Air_Temperature. assuming no delay or error. The termisused to
define acontrolledvariable representing a report transmitted in response to an event. Because the software cannot guar-
antee that the most recent temperature sample is taken when the event occurs, the requirements must limit how old the
temperature sample is allowed to be. See the CoRE Guidebook and Section 4 of this report for more information.




S. Class Structuring

a state transition class include the addition of new states and changes to the transitions between states.
The ADARTS Guidebook mentions the possibility of change to the sequence of actions taken in
response to an event. However, CORE mode machines do not associate actions with mode transitions.

In general, you should create an operation for each event that causes the mode machine to change
states. Section 4.1.3.1 of the CoRE Guidebook states that an event occurs when a condition changes
value. Events can be given names such as event_Button_Pressed and are described using event
expressions in the form of

@T(C;) when C;
or
@F(C;) when Cz

where C; and C, represent conditions and the “when” part of the expression is optional. Look for
named events or expressions such as these in the definition of a mode machine, and map them to
operations on the corresponding state transition class. If a large number of events are associated with
a single mode machine, you may choose to map several events to a single operation. If the operations
for events do not return the current mode, the state transition class must include an operation to query
the current mode. Trace the query operation to tables that mention modes of the mode machine and
expressions that include the subexpression

INMODE (X)
where X is one of the modes of the mode machine.

Figure 40 is an example of a mode machine, its definition in terms of modes, transitions, and events,
and the corresponding ADARTS state transition class.

Create one object for each mode machine in the CoRE specification. This will almost always amount
to creating one object for each state transition class. However, if the requirements specification
included two or more identical mode machines and you mapped them to the same state transition
class, then you will create multiple objects from a single state transition class.

5.1.6 USER INTERFACE CLASS

The purpose of a user interface class is to hide the look and feel of an interface between your
application and a human user. Look and feel requirements are more abstract than and can change
separately from input and output requirements. Examine REQ tables and the definitions of terms to
find user interface look and feel requirements, and map these requirements to a user interface class.
Requirements for ADARTS user interface classes will generally come from CoRE boundary classes.
Use this section with Section 9.4.6 of the ADARTS Guidebook.

For example, the Fuel Level Monitoring System case study in the CoRE Guidebook includes
requirements for displaying three operator messages. One of the messages is a number representing
the level of fuel in a tank. The other two messages are textual warnings that flash on and off at a rate
of 1 Hz (see Section B.8 of the CoRE Guidebook). Requirements for the operator display include
position and format for the messages and the flash rate for the two warning messages. This
information can change independently from the OUT relation, which specifies how the software
causes the alarm to sound.
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mon_Reset_SO mode_SOS
event_Emergency_
mon Emerge mode_System_ > Button_Pressed ;voe; t_Reset_
_Button Mode
4—{ mode_Normal
Mode Class Definition of Mode Machine

System Mode State
Transition Class

LEmergency_Button_Presscdl
r

| Reset_sos |

LCurrent=Mode |

State Transition Class
Figure 40. Example of State Transition Class

You could map the user interface requirements to a user interface class as shown in Figure 41. The
Set_con_Level Display operation displays its numeric parameter (an approximation of
mon_Fuel_Level in the part of the screen allocated to con_Level_Display. The operations
Set_con_High_Alarm and Set_con_Low_Alarm each take a Boolean parameter indicating if the
corresponding message should be visible. A process would call these operations often enough to
achieve the 1 Hz blink rate. This class would depend on device interface classes that would encapsulate
low-level details of the audible alarm and display screen.

Alphanumeric Display
User Interface Class

l Set_con_Level_DisM
]

[ Set_con_High_Alarm |

| Set_con_Low__AlannJ

Figure 41. Example of User Interface Classes
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§5.1.7 CoMPUTATION CLASS

Computation classes as described in the ADARTS Guidebook (Section 9.4.7) encapsulate
computational algorithms and execution sequences. Computation classes derived from a CoRE
specification encapsulate only computational algorithms because CoRE requirements are not stated
in terms of imperative actions.

Map to a computation class requirement implying the need for a computational algorithm that is
sufficiently complex to justify a separate class or that can change independently from concerns
allocated to other classes. It is not necessary to map every computation to its own class. The Air
Temperature Sensor device interface class in Figure 36 includes a computation (i.e., the conversion
of input variable approximation to a monitored variable approximation) that is simple and not
expected to change independently of the other concerns related to the device interface. The Wind
Sensor device interface class and Wind Computation classes in the same figure exemplify a
computation that should be encapsulated in a separate class because of its complexity and the
possibility of its changing separately from the device interface concerns.

Search the REQ, IN, and OUT tables, mode transition tables, and term definitions for complex
expressions and subexpressions indicating the need for a computational algorithm. You can form
ADARTS computation classes from all kinds of CoRE classes (boundary, term, and mode). You
should also examine term definitions. Map each expression to a computation class. You may choose
to map an expression to one computation class and a subexpression to another, and you also may
choose to map related computations to the same class. You may even have the opportunity to use one
function provided by the class in the definition of another. For example, the function encapsulated by
Wind Computation Class is

Wind_Direction= ARC_COS (Wind_Velocity_X_Axis/Wind_Magnitude)
where

Wind_Magnitude= SQRT( Wind_Velocity X_Axis**2
+ Wind_Velocity_ Y _Axis**2)

In the case study, the definitions of Wind_Direction and Wind_Magnitude were mapped to Wind
Computation Class, and the ARC_COS function was mapped to a separate Trigonometric Functions
Computation Class.

Create at least one object for each computation class. If the functions provided by a computation class
are defined solely in terms of their parameters, then the class will not encapsulate any state
information and a single object will be sufficient. On the other hand, a function computed
incrementally (such as a running total) will require state information. In this case, you may need to
define additional objects.

5.2 ABSTRACT INTERFACE

This section describes how you can maintain CoRE’s level of precision in ADARTS class structuring
work products. Section 5.3 explains how you can use the abstract interface to verify some important
characteristics of classes. See the ADARTS Guidebook (Section 9.5) for a complete introduction to
the abstract interface. The guidelines in this section are optional enhancements to the ADARTS
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method facilitated by the precision of CoRE requirements and motivated by the desire to maintain
CoRE'’s level of precision in the design. The benefits of precision are discussed in Section 2.5. You
do not have to follow the guidelines in this section, but you should strongly consider doing so.

The purpose of the abstract interface is to record information about a class that is unlikely to change
over the life of the software. The abstract interface is the part of the class specification that can be used
by other software in the system. The rest of the class specification is considered “hidden” from the
viewpoint of other software. Information hidden by a class can be changed without affecting other
classes or processes in the system.

You make use of five basic concepts to document the abstract interface precisely. These concepts are
abstract state, operations, invariants, preconditions, and postconditions.

5.2.1 ABSTRACT STATE

This is an abstraction of information maintained by objects derived from a class. An example of an
abstract state is the set of air temperature readings maintained by the Air Temperature Readings
Collection object (see Section App.4.8). Objects derived from some classes (e.g., the Trigonometric
Functions Computation Class) maintain no information and will have no abstract state. Objects
derived from state transition, data abstraction, and collection classes will always have an abstract
state. The abstract state of a device interface object may describe some characteristic of the device that
is significant to the software.

Describe the abstract state textually and give it a name. You will use the name to define invariants,
preconditions, and postconditions. In some cases, the abstract state will have attributes that you will
want to distinguish by assigning each a name. For example, the abstract state of the Buoy Location
Data Abstraction object has attributes Latitude and Longitude. You should also describe the domain
of values that the abstract state can assume. If the abstract state comprises several attributes, you
should associate a domain of values with each. Whenever possible, you should take the name and
domain of values from the requirements mapped to the class. If you find that the abstract state of two
objects derived from a class have different value domains, you should consider deriving the objects
from separate classes. Table 11 contains examples of abstract states.

Table 11. Examples of Abstract State

Class Abstract State Initial Value
SOS Report state_Latitude (value of state_Latitude_Defined=FALSE
Data Abstraction | ~ <Latitude>mon_Buoy_Location) state_Longitude_Defined=FALSE

state_Latitude (value of

~ <Longitude>mon_Buoy_Location)
state_Latitude_Defined (Boolean value—TRUE

- | if Set_Latitude operation called at least once)
state_Longitude_Defined (Boolean value—TRUE
if Set_Longitude operation called at least once)

Air Temperature |state_Collection (Value: A set of up to 6 elements. | {} (i.e., the empty set)
Readings The elements are taken from the same domain as
Collection mon_Air_Temperature.)

You should specify the initial value of the abstract state in enough detail to allow you to predict how
the operations will behave. It is not always necessary to specify the initial value of each attribute of
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the abstract state. For example, the SOS_Report Data Abstraction class encapsulates the format of
the 60-second SOS report, which contains the current buoy location. The abstract state of the object
derived from this class consists of four items: two numeric values for latitude and longitude, and two
Boolean flags that indicate whether the numeric values have been defined. The behavior of the
operation returning the ASCII encoding of the SOS report is defined in terms of the Boolean flags,
and returns an error if either latitude or longitude is not defined. In this case, you can predict the
behavior of each operation without specifying an initial value for latitude and longitude, as long as the
Boolean flags are initially false.

5.2.2 OPERATIONS

Operations are the services exported by objects to the rest of the software. Some operations alter and
report the abstract state of an object; others, such as trigonometric functions may just compute a value
based on their parameters. You should name each operation and describe its parameters (if any).
Informally describe the effect of each operation; you will also describe operations formally using
preconditions and postconditions.

5.2.3 INVARIANTS

Invariants are assertions about the abstract state of the class. Invariants are always true. That is, an
invariant is true initially, and no change to the state of the system will ever negate it. Wherever
possible, express invariants as logical expressions. You will use invariants to evaluate the class
specification. You will also use invariants, along with preconditions and postconditions to evaluate
the software architecture. Table 12 contains the invariants for the classes mentioned in Table 11.

Table 12. Examples of Invariants

Class Invariants

Buoy This class has no invariants
Location

Data Abstraction

Air Temperature Readings SIZE(state_Collection) <6
Collection

It is possible to write global invariants which relate the abstract state of objects derived from one class
to the abstract state of objects derived from other classes, or to requirements. This technical report
deals only with local invariants, which assert properties of a single class.

5.2.4 PRECONDITIONS AND POSTCONDITIONS

Preconditions and postconditions are assertions about the abstract state wich define the behavior of
operations. As with invariants, the preconditions and postconditions described in this report deal only
with the abstract state and parameters. They do not mention other classes or requirements. If a
precondition holds when an operation is invoked, the associated postcondition will hold from the time
the operation completes until the next change to the abstract state or one of the parameters. Often,
an operation will behave differently under different circumstances. In such cases, you will use one
precondition-postcondition pair to describe each type of behavior. For example, the Compute
Average Air Temperature Operation on the Air Temperature Readings Collection Class returns the
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arithmetic average of the air temperature readings if there are six readings in the collection, and an
error if there are fewer than six. The error indication is considered an undesired event (see Section
9.5.3 of the ADARTS Guidebook).

As with invariants, you should write preconditions and postconditions as logical expressions. When
the operation changes the value of the abstract state or a parameter, use a naming convention to
distinguish the original value from the value upon completion of the operation. In the examples, this
report uses the prefix “Updated_” to identify the value upon completion. Table 13 contains the
preconditions and postconditions for the Record Air Temperature Operation of the Air Temperature
Readings Collection Class, where state_Collection represents the abstract state of a collection and
Value is a parameter to the operation.

Table 13. Preconditions and Postconditions for Record Air Temperature Operation

Precondition Postcondition
SIZE(state_Collection) <6 Updated_state_Collection

=state_Collection UNION {param_Value}
SIZE(state_Collection)=6 Updated_state_Collection=state_Collection

— OLDEST(state_Collection) UNION {param_Value}

When defining the behavior of state transition classes, you must specify what happens when an event
occurs in a mode not anticipated in the CoRE specification. For example, the mode machine in
Figure 40 does not specify what happens if event_Emergency_Button_Pressed occurs in mode_SOS
orifevent_Reset_SOS occurs in mode_Normal. It is reasonable to assume that nothing should happen
in either case. There certainly should not be a mode change. Also, detection of either event/mode pair
by the software should not be considered an error because both can happen. In general, if you can
prove that an event/mode combination not mentioned in tke requirements will never occur, then the
state transition class can legitimately report an error when the corresponding operation is invoked in
the corresponding state. Otherwise, the operation should do nothing when invoked in that state.

Where feasible, you should refer to the requirements when writing preconditions, postconditions,
invariants, and defining the abstract state. This will minimize the configuration control problem that
results from changes in requirements. For example, the Calculate_Air_Temperature Operation on
the Air_Temperature_Sensor Device Interface Class references IN’_for_mon_Air_Temperature (see
Section App.4.1.1).

You should specify error bounds for operations that can introduce error. Error is usually introduced
by computations on real numbers. Error is inherent in any software representation of real numbers
because the precision of the representation is limited by the number of bits available. On the other
hand, representations of discrete values (e.g., Boolean and enumerated values) do not necessarily
introduce error. Any operation producing a value (i.e., a return parameter or update to the abstract
state) that is not taken from a discrete set has the potential to introduce error, and you should specify
abound on the error as part of the postconditions. An example of an operation that can introduce error
is the Compute_Averaged_Air_Temperature Operation on the Air_Temperature_Readings
Collection Class, shown in Table 14. In the first postcondition, Averaged_Air_Temperature is the
value returned by the operation, and the maximum error allowed is 1 degree centigrade. This means
that, upon completion of the operation, the return parameter Averaged_Air_Temperature will differ
from ROUND[SUM(Collection)/6] by a maximum of 1 degree. Stated formally:
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| Averaged_Air_Temperature — ROUND[SUM(Collection)/6]| <1 degiee centigrade

Note that the error bound relates a value returned by an operation to the abstract state of the class.
It does not attempt to relate the value returned or the abstract state to the environmental entity that
it represents (in this case, term_Averaged_Air_Temperature). This is consistent with the purpose of
the error bound, which is to limit the error introduced by the operation. In software architecture
design, you will relate the return value Averaged_Air_Temperature to the approximation of
term_Averaged_Air_Temperature. No error bound is specified for the second postcondition because
no value is returned and no abstract state is updated.

Table 14. Example of Bounding Error

Precondition Postcondition

SIZE(state_Collection)=6 Averaged_Air_Temperature =
ROUNDI[SUM(state_Collection)/6}

Maximum Error: 1 degree centigrade
SIZE(state_Collection)<6 ERROR(Insufficient Data)

5.3 EVALUATION CRITERIA

The criteria for evaluating class structuring work products discussed in Section 9.10 of the ADARTS
Guidebook applies to classes and objects derived from CoRE requirements. This section discusses
some additional criteria that you can apply if you specified the abstract interfaces as described in
Section 5.2 of this report. This version of the evaluation criteria does not take error bounds into
consideration.

This section explains how you can use enhancements to the abstract interface described in Saction 5.2
to verify some important characteristics of classes. As with the enhanced abstract interfacr guidelines,
these guidelines are optional enhancemeiits to the ADARTS method. You do not have :« follow the
guidelines in this section; however, you should strongly consider doing so if you foliowed the
guidelines in Section 5.2.

Sections 5.3.1 through 5.3.5 provide some simple rules for ensuring completeness, self-consistency,
and correctr:ess of a class specification. These rules deal with classes in isolation; they do not describe
how to ensure that a class is consistent with other classes, with the processes that use it, or with
requirements. You will use the software architecture design ev~luation criteria to evaluate consistency
between classes and processes and consistency of the software .zsign with requirements. Section 5.3.6
contains some simple ruies fcr ensuring that you have defined all the classes and operations necessary
to satisfy requirements. Section 5.3.7 discusses error analysis.

Consistency between classes is a topic that you should address during implementation. In class
structuring, you derive the dependency graph by making assumptions about how you will implement
the internals of each class. If you identify a dependency between two classes, you have assumed that
the implementation of one class will use the abstract interface of the other and that the abstract
interface will be adequate. You cannot verify the assumption because you do not know how classes will
use each other. On the other hand, you can verify consistency between processes and the classes they
use because you developed process behavior specifications during process structuring.
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The examples in this section are very detailed and are developed using formal logic. The purpose is
to illustrate the principles involved—not to imply that your evaluation of your classes must be this
detailed or this formal. Gries (1981) contains a good discussion of the concepts motivating this section
and provides some very good guidance for verifying implementations. The notation used in this
section is defined in Section 2.7.

§.3.1 COMPLETENESS CRITERION—STRONG FORM

Each precondition describes a scenario in which an operation can be invoked. The corresponding
postcondition describes the result of invoking the operation under the scenario. If an operation is
invoked in some situation not described by any precondition, then it is not possible to predict what the
operation will do.

Every situation in which an operation can be invoked should be described by at least one precondition.
The weakest precondition for an operation should describe all permissible values of the abstract state
and parameters to the operation. The weakest precondition is formed by logically disjoining (i.e.,
or-ing together) the individual preconditions®. You can be certain of completeness if the weakest
precondition describes all possible values of the abstract state and parameters. Stated more formally,
where Py, P, . . ., P are preconditions for an operation, an operation satisfies the strong completeness
criterion if the following is true for all values of the abstract state and parameters:

PiorPyor...orPp

PjorP;or...or Py forms the weakest precondition for the operation. If the operation is invoked when
this condition is false, then you may not be able to predict what the operation will do. This form of the
completeness criterion is somewhat more restrictive than it needs to be because it covers values of the
abstract state that may be disallowed by the invariants. Section 5.3.2 discusses a less restrictive form
that you can use in place of this one.

For example, the preconditions to the Record Air Temperature operation on the Air Temperature
Readings Collection Class described in Section App.4.8 are:

Precondition 1 for Record Air Temperature operation: SIZE(state_Collection) <6
Precondition 2 for Record Air Temperature operation:  SIZE(state_Collection)=6
Thus, where P; and P, respectively denote Preconditions 1 and 2,

PyorP, = SIZE(state_Collection)<6 or SIZE(state_Collection)=6
= SIZE(state_Collection) <6

which does not hold for all values of state_Collection. The situation not covered by the weakest
precondition is not(SIZE(state_Collection) < 6) = SIZE(state_Collection)>6.

If the operation is called when this condition holds, you cannot predict the outcome. At this point, you
can take one of two actions. One possibility is to examine the invariants to determine if the Record

5. Asthetermisdefinedin Gries(1981), thisistheweakest precondition with respect to the disjunction of the postconditions
for the operation. It describes all values of the abstract state and parameters for which at least one of the postconditions
will hold when the operation compietes.




S. Class Structuring

Air Temperature operation can ever be called when SIZE(Collection) >6. Section 5.3.2 tells you how
to do this. The other possibility is to make the operation more robust by changing the preconditions
to allow for this condition. You could broaden the second precondition to

SIZE(Collection) =6
or you could leave the second precondition alone and add a third:
Precondition 3 for Record Air Temperature operation:  SIZE(state_Collection)>6

Postcondition 3 could describe the operation returning an error condition or deleting enough old
elements of the collection to reduce the collection size to six.

In general, when you apply this form of the Completeness Criterion and the weakest precondition is
not true, you should examine its logical negation. Either apply the other form of this criterion to
convince yourself that the operation will never be called when the weakest precondition does not hold,
or change the set of preconditions to include the logical negation of the weakest precondition.

5.3.2 COMPLETENESS CRITERION—WEAK FORM

Section 5.3.1 discussed a form of the Completeness Criterion that may sometimes require you to
specify the behavior of an operation under a scenario that you do not expect to happen. The criterion
in that section has the advantage of being easy to use, but it may require you to change existing
preconditions or to add new ones. This section discussed a form of the same criterion that allows you
to use invariants to eliminate scenarios that will never arise.

The weak form of the Completeness Criterion can be stated as follows, where Py, P,, . . ., P are
preconditions for an operation, and I, I, . . , Iy are invariants associated with the class:

I and I, and. . .and I, implies Py or Py or...or P

All of the invariants are true all of the time. Because the invariants discussed in this report are
maintained by the class, you can establish this using the Initial State Criterion (see Section 5.3.4) and
the Consequence Criterion (see Section 5.3.5). Because the abstract state will never assume a value
that does not satisfy I; and I and . . .and Iy, thic value does not need to be covered by any of the
preconditions.

The weak form of the Completeness Criterion says that whenever the invariants are all true, at least
one of the preconditions must be true. This criterion does not prohibit the preconditions from covering
situations that are not allowed by the invariants; it simply states that the preconditions may not omit
any situation that the invariants allow.

Application of the strong form of the Completeness Criterion to the Record Air Temperature
operation on the Air Temperature Readings Collection Class necessitated either rewriting one of the
preconditions or adding a new one. The weak form of the criterion does not require any such change.
The invariant for the class is SIZE(Collection)<6, and the preconditions to the operation are
SIZE(Collection)<6 and SIZE(Collection)=6. The weak form of the Completeness Criterion for this
operation is satisfied if:

SIZE(state_Collection) < 6 implies SIZE(state_Collection) <6 or SIZE(state_Collection)=6
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This is the same as
SIZE(state_Collection) < 6 implies SIZE(state_Collection) <6

which is obviously true.

5.3.3 DETERMINISM CRITERION

If you use multiple preconditions to describ< different situations in which an operation can be invoked,
be sure that the preconditions really do describe different situations. If two or more preconditions
hold for some combination of values of the abstract state and parameters, then you will not be able
to predict which postcondition will hold when the operation completes. In effect, you have
ambiguously specified the behavior of the operation. There is a possibility that the implementor will

_ discover what you meant and resolve the ambiguity accordingly. Otherwise, there is a good chance that
he will implement the operation in a way that you did not intend. You use the Determinism Criterion
to detect and eliminate ambiguities during Class Structuring. The Determinism Criterion can be
formally stated as follows, where Py, Py, . . , Py are preconditions for an operation:

Pjand P; = false
for any i, j in the range [1..L] and i #j.

The determinism rule holds for the Record Air Temperature operation, as shown below:

Py and P; =SIZE(state_Collection)<6 and SIZE(state_Collection)=6
= false

To see the use of the Determinism Rule, consider the implication of (mistakenly) using “<” instead
of “<” in the first precondition to the Record Air Temperature operation. When the operation is
invoked with SIZE(Collection)=6, both preconditions are satisfied and either postcondition could
hold:

Postcondition 1:  Updated_state_Collection=state_Collection UNION {param_Value}

Postcondition 2:  Updated_state_Collection=
(state_Collection—  OLDEST(state_Collection))
UNION  {param_Value}

In this case, you cannot predict the resulting size of the collection. If Postcondition 2 always holds, the
collection will not exceed the bound on its size. However, if Postcondition 1 holds at least some of the
time, then the collection will grow, possibly without bound. The ambiguity is revealed by conjoining
(i.e., and-ing together) the two preconditions:

Py and P, SIZE(state_Collection) < 6 and SIZE(state_Collection)=6
(SIZE(state_Collection) <6 or SIZE(state_Collection)=6)
and  SIZE(state_Collection)=6
(SIZE(state_Collection)<6 and SIZE(state_Collection)=6)
or SIZE(state_Collection)=6
= false or SIZE(state_Collection)=6

= SIZE(state_Collection)=6
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The Determinism rule is a bit stronger than it needs to be. In reality, it is acceptable for two
preconditions to overlap in some cases as long as the corresponding effects are the same. A trivial
example is obtained by splitting Precondition 1 for the Record Air Temperature operation into two
cases:

Precondition 1a: SIZE(state_Collection) <3
Postcondition 1a: Updated_state_Collection=state_Collection UNION {param_Value}

Precondition 1b: 3 < SIZE(state_Collection)<6
Postcondition 1b: Updated_state_Collection=state_Collection UNION {param_Value}

In this example, preconditions 1a and 1b do not satisfy the Determinism Rule because the state
SIZE(state_Collection)=3 satisfies both of them. However, this is not a problem because the effect
of the operation is the same in either case. For simplicity, the Determinism Criterion as stated does
not address the situation in which overlapping preconditions for an operation produce the same effect
or the situation in which the point of overlap is disallowed by the invariants.

In some cases, nondeterministic selection of a postcondition really does not matter. For example, in
many cases, an operation can detect multiple errors. If you do not care which error is reported if two
or more error conditions exist, you can leave the choice up to the implementor. See Section App.4.5.1
for an example.

5.3.4 INITIAL STATE CRITERION

From the user’s perspective, invariants must hold at all times, including the time before any operations
are performed. Therefore, the initial value of the abstract state (if there is one) must satisfy all
invariants. The Initial State Criterion can be formally stated as follows, where S defines the initial state
and I;, I, ..., Iy are invariants that are maintained by the class:

S implies I;
S implies I

S implies Iy
The Air Temperature Readings Collection Class satisfies the initial state criterion because:

state_Collection={} implies SIZE(state_Collection) <6

5.3.5 CONSEQUENCE CRITERION

You used the Initial State Criterion described in Section 5.3.4 to show that invariants maintained by
the class are true initially. If you can also chow that no change to the abstract state of an object derived
from the class violates these invariants, tnen you have shown that the invariants are always true.
Because only the operations can change the abstract state, this amounts to showing that no operation
will cause an invariant to become false. Or, stated positively, you must show that if an operation is
invoked when the invariants are true, the invariants will still be true when the operation completes.

To describe the Consequence Criterion, some abbreviations are introduced. Where Iy, I, . . , Iy are
invariants that are maintained by the class and P;, Q; represent one of the L precondition-postcondition
pairs:
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e LetI=]andl;and...and ]y

e Let Updated_I be I with each reference to an attribute of the abstract state state_X replaced
with Updated_state_X

Then the operation satisfies the Consequence Criterion if:
I and P; and Q; implies Updated_I
for all i in the range [1..L].

I asserts that all of the invariants are true and refers to the abstract state before the operation takes
place. Updated_I refers to the abstract state upon completion of the operation. Often, a postcondition
Q; will not mention each attribute of the abstract state. To prove the above in such cases, you use the
convention that anything not mentioned in the postcondition is assumed not to have changed.

Note that the above is not the same as:
Iand P; and Q) and . . . and Py and Qy implies Updated_I

You must show that each precondition-postcondition pair by itself is sufficient to maintain the
invariants because upon completion of the operation, you are guaranteed only that one of the
postconditions will hold.

The Record Air Temperature operation on the Air Temperature Readings Collection Class satisfies
the Consequence Criterion. For the first precondition-postcondition pair:

SIZE(state_Collection) <6
and SIZE(state_Collection)<6
and Updated_state_Collection=state_Collection UNION {param_Value}
implies  SIZE(Updated_state_Collection) <6

In other words, adding a value to a collection with fewer than six elements results in a collection with
no more than six elements. For the second pair:

SIZE(state_Collection) <6
and SIZE(state_Collection)=6
and Updated_state_Collection=
state_Collection ~OLDEST(state_Collection) UNION {param_Value}
implies  SIZE(Updated_state_Collection) <6

Or, if the collection has exactly six elements, the software can remove an element and add a new one,
and the size of the updated collection will not exceed six.

Notice that including the invariant SIZE(state_Collection) <6 to the left of the implies operator is
redundant because each precondition makes a stronger statement about the abstract state. This
redundancy is a characteristic of the Record Air Temperature operation; including the invariant is not
redundant in general. For example, consider changing the Air Temperature Readings Collection Class
so that there are always exactly six entries in the collection and changing the Record Air Temperature
operation so that it always removes the oldest value from the collection. Then, the invariant is
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SIZE(state_Collection)=6

The single precondition to Record Air Temperature is true (because the operation always behaves in
the same way), and the single postcondition is:

Updated_statc_Collection=
state_Collection —OLDEST (state_Collection) UNION {param_Value}

Now the invariant is necessary because omitting it yields the following, which cannot be proven:

true
and Updated_state_Collection=
state_Collection —OLDEST(state_Collection) UNION {param_Value}
implies  SIZE(Updated_Collection)=6

The expression to the left of the implies operator makes no mention of the size of the collection, so
you cannot infer anything about the size of the collection when the operation completes.

5.3.6 CORRECTNESS ANALYSIS

Because class structuring describes static behavior without dynamic behavior, you analyze correctness
without considering timing. This approach allows you to show that the controlled variable has the
correct value when the operations are invoked at the right time and to meet timing constraints. A
complete analysis can be performed during the software architecture design when dynamic behavior
is combined with static behavior.

Before you end the class structuring activity, you should convince yourself that you have specified a
set of classes and objects that, when invoked, behaves as specified in the requirements. The essence
of this analysis is finding a sequence of operations that, when combined with device behavior, will
produce the value of a controlled variable required by REQ. You apply this analysis for every
controlled variable in the requirements specification.

For simplicity, the discussion in this section treats all class operations as functions. When an operation
changes the value of a state and a subsequent operation uses the value, that value is treated as the
function result of the “set” operation and the input to the “get” operation. For example, the
Set_Report and Get_Next_Page operations of the ASCII report data abstraction class use a state
variable to describe behavior.

Correctness can be shown when, for every behavior defined by a value function in REQ, there exists
a composition of operations (combined with device behavior) equal to that value function. If this
analysis is done for class structuring, it will reduce the probability of rework necessitated by software
architecture design when process logic is updated with invocations to these operations. This
composition of functions correlates to the stimulus/response threads evaluated during process
structuring.

One way to begin the analysis is to find a composition of functions that is at least well defined and
satisfies the preconditions specified for each function. Using the abbreviations VF for value function
and OP for operation, the goal can be expressed informally as:

CON.VF (mon_V) =
OUT.VF (out_V.OP (...~ con_V.OP(... “mon_V.OP(...in_V.OP (IN.VF (mon_V))...)..)...))
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The following example is an informal walkthrough to illustrate how correctness analysis would begin.
The example uses the case study where an SOS_Report is produced every 60 seconds when in
mode_SOS (see Section App.2.11.1):

Assume:
[mon_Time mod 0] = 60 and
INMODE (mode_SOS)

Show that: ‘
There exists a composition of operations for the value of con_Report. ASCII_Report,
ASCII(term_SOS_Report).

The term_SOS_Report (see Section App.2.6) consists of only one element, mon_Buoy_Location, so
begin with the input device that provides mon_Buoy_Location (see Section App.2.10.1):

IN_for_mon_Buoy_Location:
in_Omega_System_Input = mon_Buoy_Location + mon_Omega_Error (+ 0.4 km)

Using the notation introduced earlier:

in_Omega_System_Input =
IN_for_mon_Buoy_Location.VF(mon_Buoy_Location, mon_Omega_Error)

The input variable that the software uses is in_Omega_System_Input. You can now focus on class
specifications derived from that input variable or device. You most likely need to approximate
mon_Buoy_Location:

OMEGA_NAVIGATION_SYSTEM DEVICE INTERFACE CLASS:
get_Omega_Input (see App.4.2.1)

Buoy_LocaTioN COMPUTATION CLASS:
estimate_Buoy_Location (Omega_System_Input) (see App.4.10.1)

Looking at the postcondition of get_Omega_Input, the value returned depends on the value of
in_Omega_System_Input. To continue using functional notation, use a parameter instead of referring
to the input variable to get:

~mon_Buoy_Location =
estimate_Buoy_Location(get_Omega_Input
(IN_for_mon_Buoy_Location.VF(mon_Buoy_Location, mon_Omega_Error)))

There are now many candidate operations because ~mon_Buoy_Location is used several ways.
Because the requirement under consideration is to generate a report, concentrate on classes derived
from the con_Report variable:

SOS_REPORT DATA ABSTRACTION CLASS:
ASCII_Format (Set_Latitude (Latitude), Set_Longitude (Longitude)) (see App.4.7.1 and
App4.7.2)

In fact, the latitude and longitude must be from the ~ mon_Buoy_Location, which you already have.
Because the ASCII_Format operation approximates the value of con_Report_ASCII, look for
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operations that can generate an output variable from ~con_Report_ASCII. Treat the state variable
as a function result and parameter to continue using the function notation for this walkthrough:

ASCII_REPORT DATA ABSTRACTION CLASS:
Get_Next_Page (Set_Report (=~ con_Report_ASCII)) (see App.4 5.1 and App.4.5.2)

Because you are dealing with a one-page report, you do not have to dcal with iteration, and one
invocation of Get_Next_Page is sufficient. Also, because there is at least one page, the precondition
state_Pages_Remaining is true. Now you only need to apply the value function for the output device
(see Section App.2.11.2) and compose it with the monitored variable approximation above:

con_Report. ASCII_Report =
Out_for_con_Report (Get_Next Page (Set_Report (ASCII_Format (Set_Latitude
(™~ mon_Buoy_Location.Latitude), Set_Longitude (~ mon_Buoy_Location.Longitude)))))

where

~mon_Buoy_Location =
estimate_Buoy_Location(get_Omega_Input
(IN_for_mon_Buoy_Location.VF(mon_Buoy_Location, mon_Omega_Error)))

Of course, this only shows a possible composition of operations. By using a strong typing system or
showing that each operation’s preconditions hold, you can show that the composition is well defined.
But correctness requires that the composition equal the value function given the assumptions; i.e., that
the composition of functions above simplifies to:

con_Report. ASCII_Report = ASCII(term_SOS_Report)

To finish the analysis, each of the value functions and operations in the composition is replaced with
the appropriate expressions that describe the value returned. Then, the expression is simplified to
determine whether it equals the expression used to describe the required behavior.

5.3.7 ERROR ANALYSIS

When error and delay functions are independent (see Section 3.3), error analysis can be performed
before merging the dynamic view of the system in software architecture design. Each of the function
compositions described in Section 5.3.6 can be evaluated for the worst case error.

Each of the operations must be allocated some allowed error in the form of a constant value or
function of the operation inputs and state. This is not necessary for discrete valued objects and their
classes.

Beginning with the input device, maximum error propagation can be calculated as each function is
applied until the value of the controlled variable is calculated. If this propagated error is less than the
tolerable error in the CoRE specification for that controlled variable, then the error tolerance has
been met.

5.4 FUTURE WORK

The following topics should be considered in future versions of the class structuring guidelines:
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1.  The evaluation criteria discussed in Section 5.3 should consider computational error.

2.  The evaluation criteria should allow specialization classes to inherit characteristics informally
proven about the generalization parent (generalization and specialization classes are
described in Section 9.6 of the ADARTS Guidebook).

3.  There should be additional guidance for writing invariants, preconditions, and postconditions
that relate the abstract state of a class to the requirements traced to the class (e.g., assumptions
relating the abstract state of the Air_Temperature_Readings Collection Class in the HAS
Buoy case study to term_Averaged_Air_Temperature).




6. SOFTWARE ARCHITECTURE DESIGN

The software architecture design activity of the ADARTS method does not use requirements artifacts
as input. Therefore, the essence of the heuristics is relatively immune to change. However, the ap-
proach presented in this document suggests that CoRE's precision can continue to be exploited as you
apply ADARTS heuristics. This section highlights the advantages of using a precise specification of
behavior during software architecture design. The guidelines in this section are optional; you do not
have to follow them to produce an ADARTS design from CoRE requirements. However, you should
strongly consider following these guidelines if you attempted to maintain CoRE’s level of precision
in process and class structuring. Use this section with Section 10 of the ADARTS Guidebook.

The entrance criteria for software architecture design remain the same. You must have the process
architecture diagram, process behavior specifications, class specifications, and dependency graph
work products. The following sections describe the software architecture design activities in terms of
the more precisely defined work products:

¢ Merging the dynamic and static views of the design into the software architecture diagram and
updating the process logic (see Section 6.1)

¢ Identifying the need for resource monitors (see Section 6.2)
¢ Evaluating the software architecture design (see Section 6.3)

* If delay and error were specified as mutually dependent (see Section 3.3), analyzing delay and
error constraints in software architecture design (see Section 6.4)

6.1 MERGING DYNAMIC AND STATIC VIEWS
Use this section with Section 10.4 of the ADARTS Guidebook.

The key guideline in merging the dynamic and static views of the system is to evaluate the
requirements traceability in the process behavior specifications and class specifications.

A general procedure is presented in Section 6.1.1 followed by an example in Section 6.1.2.

6.1.1 GENERAL PROCEDURE

For each process behavior specification, examine the process logic and traceability to find the
operations on objects that match each response in a stimulus/response pair. Update the process logic
to invoke the operation with appropriate parameters.

Ensure that the preconditions for the operation are met when the operation is invoked. Several stimuli
may respond to the same event under different conditions. You must match the operation with the
response in such a way that the precondition is true.

n
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Each time an operation is used to respond to a stimulus, add a dependency from the process to the
operation of that object (if it does not already exist). This dependency is reflected in the software
architecture diagram, which is used later to evaluate the need for resource monitors.

6.1.2 ExaMpPLE OF UPDATING PROCESS LOGIC

Consider the process logic of the Generate_Periodic_Reports process in Section App.3.4.4. Using the
requirements traceability and naming conventions, each expression is replaced with invocations of op-
erations found in class specifications. Table 15 shows an example of a portion of the process logic, how
it is updated, and the classes used from the class specifications.

Table 15. Example of Updating Process Logic

Process Logic Updated Process Logic Class Specification

if (System_Mode = "mode_SOS”) then |if Current_Mode = Emergency then System_Mode State
Transition Class

App4.9
Report.Report_Type Report.Report_Type
<~—-="SOS_Report” <--"SOS_Report”
SOS_Report <—— read latitude (SOS_Report.latitude) Buoy_Location Data
read Buoy_Location data store |read longitude (SOS_Report.longitude) | Abstraction Class
App.4.6
Report. ASCII_Report<—-— Set_Latitude (SOS_Report.latitude) SOS_Report Data
ASCII(SOS_Report) Set_Longitude Abstraction Class
(SOS_Report.longitude) App.4.7

Report. ASCII_Report
<——ASCII_Format

send Report to Report_Queue send Report to Report_Queue

The software architecture diagram is updated appropriately. A partial diagram showing the
dependencies that are added based on the updated process logic appears in Figure 42.

6.2 RESOURCE MONITORS

Use this section with Section 10.5 of the ADARTS Guidebook.

There is no significant change in dealing with multiple processes accessing the same object. The same
procedure is followed to ensure access synchronization and data protection:

¢ Add aresource monitor class with the same operations as the original class. Use the same class
behavior specification modified slightly to indicate synchronous access.

e Update the dependency graph to show that the object depends on the new resource monitor
class.

6.3 EVALUATION CRITERIA

Use this section with Section 10.7 of the ADARTS Guidebook.
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SOS_Report_
Data_Abstraction_Class System_Mode_

Set_Latifude State_Transition_Class
Set_Longitude I Emergency Button_Pressed I

ASCII_Format l LCurrenl Mode

o)
’I ”
”
: Generate

Buoy_Location_ .=
Data_Abstraction_Class Periodic_Reports

Set_Latitude Get_Latitude

Set_Longitude Get_Longitude

Report_Queue

Mode_ :Prio_Q

Change
Transition_Comm
:Tight_Reply

Figure 42. Partial Software Architecture Diagram Illustration

With the added precision of CoRE and the formalisms introduced in this report, additional evaluation
criteria can be introduced:

The preconditions for every operation must be true each tme the operation is invoked by a
process. For example, in the example shown in Table 15, invoking ASCII_Format can result
in an error if NOT(location_defined). But a quick check shows that invoking Set_Latitude and
Set_Longitude ensures that location_defined is true. Therefore, invoking ASCII_Format
cannot result in an error.

The timing constraints of each process should be reasonable when considering the operations
that must be performed. This may include assigning processing time to individual operations.
Then, each process can be evaluated to see if each response can be performed within the al-
lotted execution time. A more direct analysis might include evaluating each stimulus/response
thread using the cumulative time to execute all operations in a response instead of the
estimated execution time.

The additional delay introduced by resource monitors does not cause a violation of the timing
constraints.

An informal proof of correctness can again be accomplished using the same procedure out-
lined in Section 4.5.3.

A more detailed and complete error analysis can be performed in software architecture design
by evaluating each stimulus/response thread. However, if a complete analysis performed in
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class structuring did not reveal any problems, you are unlikely to find any problems in software
architecture design. More likely, you may have deferred some strict constrzints on the preci-
sion of operations until a more complete analysis could be done of how the operations would
be used (see Section 6.4).

6.4 RELATING DELAY AND ERROR

As discussed in Section 3.3, delay and error can be mutually dependent. Because delay is a concern
in process structuring and error a concern in class structuring, it is usually easier to design software
that meets delay and error constrai.ts separately. However, if the constraints are tight, you may have
to take the relationship between delay and error into account. For example, if you cannot meet a delay
constraint, it may be possible to allow more time for a stimulus-responsc thread to complete by
restricting the error introduced by the classes participating in the thread. This section contains an
example of dealing with the mutual dependency between delay and error.

The following example of a digital speedometer illustrates how you can znalyze the delay and loss of
precision introduced by software components and hardware devices ; ~ticipating in a stimulus-re-
sponse thread and can ensure that your design does not exceed tolerance for inaccuracy or bounds on
delay. The approach illustrated in this section makes three important simplifying assumptions:

1. This approach assumes that the delay associated with each component is constant (i.e., that
each component always takes the same amount of time to transform inputs to outputs). You
can use this approach to perform a worst case analysis of your design. If the outputs are within
range, assuming worst case performance, they will be witain range in all cases. However, fail-
ure to pass a worst case analysis does not imply anything about average-case performance. It
is possible for a design to fail under a low-probability scenario and still work often enough to
meet the requirements.

2. Each component in the design transforms one or more inputs to one or more outputs. In the
general case, the error introduced by a transformation will depend on the input value. This
approach assumes that the inaccuracy introduced by each input/output device and process is
constant. As with the previous simplifying assumption, the implication is that this approach
can be used for a worst case analysis but may not necessarily indicate how the design will
perform in the average case.

3.  This approach does not consider the error introduced by arithmetic operations on floating-
point numbers. See Knuth (1981) for a discussion of the accuracy of floating-point arithmetic.

6.4.1 EXAMPLES OF REQUIREMENTS

The environmental variables are defined in Table 16:

Table 16. Environmental Variables

Name Type Values Physical Interpretation

mon_Actual_Speed Real 0to 120 mph | The actual speed of the automobile

con_Displayed Speed |Real 0to 120 mph | The value displayed on the driver’s console.
74
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The variable con_Displayed_Speed is an integer; the display device is not capable of displaying
decimal values.

The requirements for the speedometer are:

Ideal REQ Relation: con_Displayed_Speed = mon_Actual_Speed
Tolerance: The displayed speed must not differ from the actual speed by more than 1 mph.
NAT Relation: Acceleration and deceleration cannot exceed 5 mph per second:

L—%mon_Actual_Specd s _Ss_r:g_h_

The above NAT relation assumes that the reading of the speedometer need not be maintained in o
crash situation, i.e., when the rate of deceleration is greater than 5 mph per second.

6.4.2 EXAMPLE OF DESIGN AND INFORMAL EVALUATION

The process architecture and input/output devices for the digital speedometer appear in Figure 43.
For simplicity, only the processes are shown on the software architecture diagram; objects are omitted.
In this simple example, each component takes a single input and produces a single output. An input
sensor measures the actual speed of the automobile, producing an input data item that is converted
by a process into an internal approximation of the actual speed. Another process truncates the approx-
imation into an integer, which a third process outputs to a display device. The display device then for-
mats the integer and causes it to appear on the driver’s console. Interprocess communications and
communications between processes and input/output devices in Figure 43 are annotated with the
value being communicated.

mon_Actual_Speed con_Displayed_Speed
Sensor Display
in_Speed_Reading out_Display_Value

REQ
~ mon_Actual_Speed ~ con_Displayed_Speed

Figure 43. Process Structure for Digital Speedometer

Timer Interrupt

The following describes the behavior of each component. Associated with each component is the ideal
relationship between its input and its output, an upper bound on error, and an upper bound on the
amount of time required for the component to produce an output given an input.

Sensor:
IN Relation:  in_Speed_Reading = mon_Actual_Speed
Error: within 0.1 mph
Delay: 0.01 sec
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IN,, IN, process:
Behavior: ~ mon_Actual_Speed . = in_Speed_Reading
Error: No loss of accuracy
Delay: 0.02 sec
REQ Process:
Behavior: ~ con_Displayed_Speed = integer(~ mon_Actual_Speed + 0.5mph)
Error: The “integer” operator introduces a loss of accuracy of up to 1 unit of
measurement.
Delay: 0.1 second
OUT,, OUT, process:
Behavior: out_Displayed_Value = ~con_Displayed_Speed
Error: No loss of accuracy
Delay: 0.02 sec
Display Device:
OUT Relation con_Displayed_Speed = out_Displayed_Value
Error: No loss of accuracy
Delay: 0.01 sec
To ensure that the design meets timing and accuracy requirements, use the above relationships to

derive a relationship between con_Displayed_Speed and mon_Actual_Speed. This relationship will
depend upon how the software and input/output device: generate con_Displayed_Speed from
mon_Actual_Speed. Then compare this relationship with the one in the requirements specification.
To derive this relationship, begin with the sensor’s translation of mon_Actual_Speed to
in_Speed_Reading and work to the end result. First, consider only loss of accuracy introduced by the
devices or computations within processes. Then consider additional loss of accuracy due to delay.

1. The maximum loss of accuracy introduced by the input sensor is 0.1 mph. Therefore,
in_Speed_Reading is within 0.1 mph of mon_Actual_Speed.

2.  Thefirst process in the thread introduces no loss of accuracy. Combining its behavior with that
of the input sensor implies that ~mon_Actual_Speed is also within 0.1 mph of
mon_Actual Speed.

3. Because the REQ process rounds its input to the nearest integer, it introduces an error of, at
most, 0.5 mph, implying that ~con_Displayed_Speed, is within 0.6 mph of
~ mon_Actual_Speed.

4.  Neither the “OUT;,OUTt” nor the display device introduce any inaccuracy. Therefore,
con_Displayed_Speed is within 0.6 mph of mon_Actual_Speed.

The analysis thus far shows that the process structure meets the timing and accuracy requirements.
However, you must also consider that each component takes a nonzero period of time to operate, dur-
ingwhich time mon_Actual_Speed can be changing at up to 5 mph per second. This can cause an addi-
tional discrepancy between the current values of con_Displayed_Speed and mon_Actual_Speed.

1.  During the 0.01 second required by the sensor to produce its input data item,
mon_Actual_Speed can change by, at most, 0.05 mph, implying that in_Speed_Reading is
really within 0.15 mph of mon_Actual_Speed.
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2.  The process “INg IN;” requires 0.02 second to read the input data item. During this time,
mon_Actual_Speed can change by, at most, 0.1 mph, implying that ~ mon_Actual_Speed is
actually within 0.25 mph of mon_Actual_Speed.

3. During the 0.1 second required by the REQ process to round ~ mon_Actual_Speed, it is
possible for mon_Actual_Speed to change by another 0.5 mph. Adding the inaccuracy
associated with the “integer” function implies that ~ con_Displayed_Speed is within 1.25 mph
of mon_Actual_Speed. Thus, the design exceeds the accuracy requirement, and the analysis
is not finished.

4.  During the 0.02 second required by the “OUTs,OUTy” process to send the output data item
to the environment, mon_Actual_Speed can change by an additional 0.1 mph, implying that
out_Displayed_Value is within 1.35 mph of mon_Actual_Speed.

5.  Finally, the Display Device requires 0.01 second to update the driver display, during which
time mon_Actual_Speed can change by another 0.05 mph. Thus, it is possible for
con_Displayed_Speed to differ from mon_Actual_Speed by as much as 1.40 mph, a total of
0.40 mph beyond the maximum allowable tolerance specified in the requirements.

The first analysis, which disregarded inaccuracy introduced by delay, implied that the design met the
requirements. However, this analysis, which took delay into consideration, shows that the design fails
to meet accuracy requirements. At this point, change the design, change assumptions made about the
timing and/or accuracy of one or more components, or try to convince the customer to change the
requirements. In this example, take the second option.

The most time-consuming component in the process structure is the “REQ” process, which takes up
to five times as long as any other component to translate its input into an output. Assume that a change
in data structures and algorithms will reduce the amount of time required by this process from 0.1
second to 0.01 second. The updated description of the “REQ” process is:

REQ Process:
Behavior: ~ con_Displayed_Speed = integer(~ mon_Actual_Speed + 0.5 mph)
Error: The “integer” operator introduces a loss of accuracy of up to 1 unit of
measurement.
Delay: 0.01 second
The updated analysis is:

1.  The variable in_Speed_Reading is within 0.15 mph of mon_Actual_Speed, as before.

2. The variable ~ mon_Actual_Speed is actually within 0.25 mph of ~ mon_Actual_Speed, as
before.

3. Because the REQ process now needs only 0.01 second, the maximum change in
~mon_Actual_Speed is 0.05 mph, implying that ~ con_Displayed_Speed will be within 0.25
+ 0.55 = 0.8 mph of mon_Actual_Speed.

4.  Asbefore, ~mon_Actual_Speed can change by an additional 0.1 mph during execution of the
“OUTs,OUTy” process, implying that out_Displayed_Value is within 0.9 mph of
mon_Actual_Speed.
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5. The additional delay of 0.01 second imposed by the Display Device will allow
mon_Actual_Speed to change by another 0.05 mph, yielding a maximum discrepancy of 0.95
mph between con_Displayed_Speed and mon_Actual_Speed. This time, the result is well
within the required bounds on error.

By revising your assumption about the timing of the REQ process, you have managed to produce a
design that meets the accuracy requirements, according to the above analysis. However, there remains
one simplifying assumption that must be discarded before you can have confidence in the process
structure. Neither of the analyses considered the frequency of the timer interrupt that triggers the
“IN,,IN;” process, assuming instead that the sensor is polled constantly. To complete the analysis, con-
sider the additional delay resulting from a finite polling frequency and the effect of this delay on
accuracy.

Assuming constant polling, the discrepancy between con_Displayed_Speed and mon_Actual_Speed
is 0.95 mph. If the delay introduced by periodic polling does not exceed 0.55 mph, the design will still
meet the requirements. To determine how much time can elapse between successive polls of the input
sensor, recall the NAT relation:

h‘%mon_Actual_Speed' < -S—SIL-IéEl—l
or
dt = 02 sec d(mon_Actual_Speed)

mph

If you maximize dt subject to the condition that d{mon_Actual_Speed) =< 0.05 mph, the result is:

0.2 sec
dt = “mph x 0.05 mph

or
dt < 0.01 sec

Thus, a polling rate of at least 100 times per second will satisfy the accuracy bounds on
con_Displayed_Speed.

6.5 FUTURE WORK

Most of the activity of merging static and dynamic views of the system should be mechanical. Although
the precision of process structuring and class structuring work products simplifies the merging activity,
there are still disconnects. This apparently results from using a different set of criteria when defining
responses in the stimulus response threads and operations in the class specifications.

Using this new level of precision, heuristics should be defined for defining responses and operations
that make the software architecture activity of updating process logic very mechanical (potentially
automatable).

78




APPENDIX: HAS BUOY CASE STUDY

This section contains the HAS Buoy case study, including a description of the problem, a CoORE
requirements specification, and ADARTS process and class structures built from the CoRE specifica-
tion. Experience obtained from this case study was used to identify and validate guidance provided
in the main portion of this report.

The CoRE work products contained in this section were developed using teamwork/RT and tailored
according to the most recent version of CoORE. The ADARTS work products contained in this section
were developed using teamwork/Ada and the guidance contained in Kirk and Wild (1992). In most
cases, the data dictionary entries have been defined using the syntax supported by teamwork/RT’s
checking facility (refer to Teamwork/SA and teamwork/RT User's Guide [Cadre Technologies, Inc.
1990]). Parts of the teamwork model that are specific to teamwork, such as references to database
identifiers of teamwork objects, have been omitted.

Section App.1 contains the HAS Buoy problem statement. Section App.2 contains the CoRE
specification developed for the HAS Buoy. Section App.3 contains the ADARTS process structure
that was derived from the CoRE specification. Section App.4 contains the ADARTS class structure
that was derived from the CoRE specification.

APP1 HAS BUOY PROBLEM STATEMENT

This section contains the HAS Buoy problem statement. This problem statement was adapted from
Software Engineering Principles (Naval Research Laboratory 1980). This problem statement has been
modified from its use in previous case studies, such as the ADARTS Guidebook.

App.1.1 INTRODUCTION

The Navy intends to deploy HAS buoys to provide navigation and weather data to air and ship traffic
at sea. The buoys will collect wind, temperature, and location data and will periodically broadcast sum-
maries. Passing vessels will be able to request more detailed information. In addition, HAS buoys will
be deployed in the event of accidents at sea to aid sea search operations.

Each HAS buoy will contain a small computer and a number of devices for interacting with its
environment. Section App.1.7 specifies the resources that are available to the HAS buoy, including:

¢ Wind sensors for determining wind magnitude and direction (see Section App.1.7.1)
* Temperature sensors for determining air and water temperature (see Section App.1.7.2)

¢ A radio receiver and radio transmitter for communicating with passing vessels (see Section App.1.7.3)
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A panel containing an emergency button and a red light (see Section App.1.7.4)

An Omega receiver for obtaining location information from the Omega navigation system
(see Section App.1.7.5)

App.1.2 SOFTWARE REQUIREMENTS

The software for the HAS buoy must satisfy the following requirements:

Maintain current wind and temperature information by monitoring sensors regularly and
averaging readings.

Calculate location via the Omega navigation system.
Broadcast wind and temperature information every 60 seconds.

Broadcast more detailed reports in response to requests from passing vessels. The detailed
reports contain buoy location information in addition to the information contained in the wind
and temperature reports.

Broadcast weather history information upon request. These weather history reports consist
of all wind and temperature reports produced in the last 48 hours.

Broadcast an SOS signal in place of the ordinary wind and temperature report after a sailor
presses the emergency button. SOS signals, including buoy location information, should be
broadcast periodically (every 60 seconds) until a vessel sends a reset signal.

Cause the buoy’s red light to begin flashing and stop flashing in response to requests from
passing vessels.

Accept location correction information via the radio receiver from passing vessels. The software
must use this information to modify its calculation of location based on Omega information.

App.1.3 REPORTS

The contents of the reports are as follows:

Wind and temperature report contains the averages of each of the following over the previous
60 seconds: air temperature, water temperature, and wind magnitude and direction.

SOS report identifies the location of the buoy.

Detailed report contains the buoy location plus the averages of each of the following over the
previous 60 seconds: air temperature, water temperature, and wind magnitude and direction.

Weather history report contains all wind and temperature reports broadcast over the last 48
hours.

Each report must be converted to ASCII characters and transmitted in RAINFORM format. The
ASCII form of each field of a report will be as identified in Table 17.
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Table 17. Report Notation

Report Field ASCII Notation
Temperature “sddd”
Buoy location “ddd°dd’dd.dd”bddd°dd’dd.dd””
Wind direction “ddd”
Wind magnitude “ddd”
where:

s “s” = sign (blank space if positive, “~” if negative).

*  “b” = blank space.

s “d” = single digit (leading zeros must always be used, and numerical values must be rounded

upward).

s Other characters represent literals.

App.1.4 SOFTWARE TIMING REQUIREMENTS

In order to maintain accurate information, readings must be taken from the sensing devices at the

following fixed intervals:
Temperature sensors: every 10 seconds
Wind sensors: every 30 seconds

App.1.5 PRIORITIES

Reports will be broadcast over the radio transmitter according to the following priority ranking:

SOS

Wind and temperature
Detailed (ship and airplane)
Weather history

1
1
2
3

highest

lowest

Transmission of lower priority reports will be interrupted when higher priority reports become ready
to be transmitted. Transmission of interrupted reports must be completed upon transmission of higher

priority reports.

App.1.6 ERROR DETECTION

The software will respond to erroneous input from the set of wind sensors by ignoring such data. Sensor
input is erroneous when opposing sensors provide conflicting information (see Section App.1.7.1).

App.1.7 HAS Buoy DEVICE SPECIFICATIONS

This section describes the interfaces to the devices with which the HAS Buoy software system interacts.

81




e —

Appendix: HAS Buoy Case Study

App.1.7.1 Wind Sensors

There are four wind sensors, each of which measures the force of the wind from its respective direction
(i.e., due north, south, east, or west). Table 18 specifies the relevant information for each sensor.

Table 18. Wind Sensor Specifications

Device Description Range/Units Size Address

North Wind magnitude in due north 0 to 255 knots | 8-bit unsigned integer Port C1
direction

South Wind magnitude in due south 01to 255 knots | 8-bit unsigned integer Port C2
direction

East Wind magnitude in due east 0to 255 knots | 8-bit unsigned integer Port C3
direction

West Wind magnitude in due west 0 to 255 knots | 8-bit unsigned integer Port C4
direction

Note that any force detected by a wind sensor means that the opposing sensor should register no wind
(e.g., if the north sensor detects wind in the north direction, the south sensor should detect zero wind).

The wind sensors are passive devices that may be sampled at any time. It takes, at most, 1 second for
the wind sensors to detect a change in wind magnitude and/or direction.

App.1.7.2 Temperature Sensors

There are two independent air temperature sensors and two independent water temperature sensors
that provide measurements of air and water temperature in degrees centigrade. Table 19 specifies the
relevant information for each sensor.

Table 19. Temperature Sensor Specifications

Device Description Range/Units Size Address

Airl Air temperature ten feet above | —-128°Cto 8-bit two’s-complement | Port Bl
the water surface 127°C integer

Air2 Air temperature ten feet above | —128°Cto 8-bit two’s-complement | Port B2
the water surface 127°C integer

Waterl Water temperature four feetbe- | -128°Cto 8-bit two’s-complement | Port Al
low the water surface 127°C integer

Water2 Water temperature four feetbe- | -128°Cto 8-bit two’s-complement | Port A2
low the water surface 127°C integer

The temperature sensors are passive devices that may be sampled at any time. It takes, at most, 1
second for the temperature sensors to reflect a change in air or water temperature.

App.1.7.3 Radio

The radio receiver is capable of receiving 3-byte message packets. Message packets are made up of
the following two components:
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Message Type:

Byte 1: 16#01# = request to turn on the buoy’s red light
16#02# = request to turn off the buoy’s red light
16#03# = request for a weather history report
16#04# = request for a detailed report
16#05# = request to terminate transmission of SOS signals
16#06# = submittal of location correction data (see Supplemental Data)
others = none

Supplemental Data:

Bytes 2 and 3: if Byte 1 indicates submittal of location correction data then:
Byte 2: 8-bit two’s complement integer indicating Omega system error
correction for latitude calculation in kilometers
Byte 3: 8-bit two’s complement integer indicating Omega system error
correction for longitude calculation in kilometers
otherwise this byte is unused.

The radio receiver is an active device that sets Bytes 1, 2, and 3 according to message type each time
an incoming message is detected. Acknowledgment of messages received by the software is performed
by resetting Byte 1. It takes, at most, 6.0 seconds for the radio receiver to identify and capture an
incoming message. Table 20 provides additional information about the radio receiver.

The radio transmitter is capable of transmitting 512-byte message packets. Message packets are made
up of the following three components:

Packet Type:

Byte 1: 2#10000001# means bytes 3 to 512 contain a page of an SOS report
2#10000010# means bytes 3 to 512 contain a page of a wind and temperature report
2#10000011# means bytes 3 to 512 contain a page of a detailed report
2#10000100# means bytes 3 to 512 contain a page of a weather history report
2#0oooox# means no message should be transmitted

Packet Identifier:

Byte 2: BitsOto3:  4-bits range 1 to 16 representing total number of pages in report
Bits4to7:  4-bits range 1 to 16 representing number of page being transmitted

Packet Buffer:

Bytes 3 to 512: Report page represented by 8-bit ASCII characters
End of report represented by 16#FF#

The radio transmitter is an active device that broadcasts a packet each time the most significant bit
of Byte 1 is set. Upon completion of a broadcast, the bit is automatically reset. It takes, at most, 10.0
seconds to transmit each packet. Table 20 provides additional information about the radio transmitter.
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Table 20. Radio Device Specification
Device Description Range/Units Size Address
Radio Broadcasts messages over a See above 512 bytes Port G
Transmitter preset radio frequency
Radio Receives messages from a preset | See above 2 bytes Port F
Receiver radio frequency

App.1.7.4 Buoy Panel

The light on the buoy panel is a passive device that is manipulated by setting or resetting the controller

bit as specified in Table 21. It takes, at most, 0.5 second for the light to turn on or off afte
has been made.

I a request

The emergency button is an active device that indicates the status of the button as specified in Table 21.
It takes, at most, 0.1 second for this bit to detect a change in status of the emergency button.

Table 21. Buoy Panel Device Specification

Device Description Range/Units Size Address
Light Switch | Controls the operation of the 0 (Off) Most significant bit of Port H
red light on the panel 1(On) 8-bit byte
Emergency Indicates the status of the 0 (Released) | Most significant bit of Port E
Button emergency button on the panel |1 (Pressed) 8-bit byte

App.1.7.5 Omega Navigation System

The Omega navigation system periodically (every 30 seconds) broadcasts location information that
is obtained by the buoy’s on-board Omega system receiver within 10 seconds. The receiver is a passive
device, updated periodically, that indicates buoy location using the following representation:

Bytes 1 and 2: Degrees latitude range 0 to 65,535, 16-bit unsigned intezer

Byte 3: Minutes latitude range 0 to 255, 8-bit unsigned integer

Byte 4: Whole seconds latitude range 0 to 255, 8-bit unsigned integer
Byte 5: 1/100th seconds latitude range 0 to 255, 8-bit unsigned integer
Bytes 6 and 7: Degrees longitude range 0 to 65,535, 16-bit unsigned integer
Byte 8: Minutes longitude range 0 to 255, 8-bit unsigned integer

Byte 9: Whole seconds longitude range 0 to 255, 8-bit unsigned integer
Byte 10: 1/100th seconds longitude range 0 to 255, 8-bit unsigned integer

Table 22 provides additional device information related to the Omega system.

Table 22. Omega Device Specification

Device Description Range/Units Size

Address

Omega Provides buoy location informa- | See above
tion as indicated by the Omega

navigation system

10 bytes

Port D
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APPR2 CoRE REQUIREMENTS SPECIFICATION

This section contains tF. CoRE requirements specification developed for the HAS Buoy problem.
This section is deconi~used into a number of subsections, each of which contains a particular kind of
CoRE requireme-.is artifact:

* Section App.2.1 contains the information model.

¢ Section App.2.2 contains the context diagram.

¢ Section App.2.3 contains the dependency graph.

¢ Section App.2.4 contains definitions of monitored and controlled variables.
¢ Section App.2.5 contains definitions of input and output variables.

* Section App.2.6 contains definitions of CORE events and terms.

* Sections App.2.7 through App.2.13 contain the CoRE artifacts relevant to each of the CoRE
classes identified on the dependency graph, including:

— Mode machines

REQ relations, including relevant behavior
- IN and OUT relations, including the inverse of each value function (IN’, OUT’)
— NAT relations

* Section App.2.14 contains the remaining teamwork data dictionary entries referenced from
data dictionary entries used to define CoRE artifacts.

The conventional use of teamwork was tailored in the following ways:

¢ Data dictionary entries have been created to define terms used in the definitions of other data
dictionary entries. Those functions that are defined by data dictionary entries are named with
a combination of upper and lower case letters. Those for which a commonly understocd defini-
tion of the function is assumed (e.g., COS, SIN, ROUND, SQRT) are named with all upper
case letters.

* The CoRE convention of labeling requirements artifacts with certain prefixes (e.g., “mon_”,
“in_,” “term_") has been adhered to; however, the convention has been extended to include the
following:

— “NAT_": a NAT relation.

— “behavior_of ": detailed behavior description (scheduling constraints) associated
with controlled variables and their REQ relations.

~ “timing_": timing and error information associated with devices specified by IN and
OUT relations. Devices are classified as one of the following (ADARTS terminology
for devices was used):
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—— Passive: The software may sample an input or produce an output at any time,
without synchronization.

— = Active: Interrupt mechanisms are required to synchronize inputs and outputs.

—— Periodic: Input variables are updated periodically, and output variables are
processed periodically by the device.

* Detailed behavior descriptions (scheduling constraints) associated with controlled variables
and their REQ relations (see data dictionary entries [DDEs] prefixed by “behavior_of_") have
been extended to include identification of relevant events. The frequency profile of each
event, including minimum, expected, and maximum intervals, is included in the DDE:s for the
events rather than the detailed behavior descriptions.

e Because most of the IN, REQ, and OUT relations in this case study are not dependent upon the
mode of the system (see Mode_Class_for_mode_System_Mode), the notation recommended by
the CoRE Guidebook for defining these relations was not particularly useful. Therefore, the nota-
tion was tailored for this use. With one exception (REQ_Relation_for_con_Report), relations in
this case study will take one of the following two forms:

Condition Variable
G Vi
G V2

which means that variable assumes value V; when condition C;j is true or value V; when

condition C; is true, or

Event Variable
E; Vi
E; V3

which means that variable assumes value V; upon occurrence of event E; or value V; upon
occurrence of event Ej.

App.2.1 CORE INFORMATION MODEL

Figure 44 illustrates the CoRE information model.

The following data dictionary entries define the attributes of entities in the information model:
Air = mon_Wind_Direction + mon_Wind_Magnitude + mon_Air_ Temperature.
Buoy = mon_Buoy_Location.

Light = con_Red_Light.
OmegaGroundUnit = mon_Omega_Exrror.
Sailor = mon_Emergency._Button.

Vessel = mon_Reset_SOS + mon_Light_Command
+ mon_Vessel_Request + con_Report.

Water = mon_Water_Temperature.
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Figure 44. CoRE Information Model

App.2.2 CONTEXT DIAGRAM

Figure 45 illustrates the CORE context diagram.

Vessel

mon_Reset_SOS
mon_Light Command
mon_Vessel_Request

con_Report

Water

mon_Water_Temperature

con_Red_Light Omega

Ground Uni

mon_Emergency_Button

Sailor l Light

Figure 45. Context Diagram

App.2.3 DEPENDENCY GRAPH

Figure 46 illustrates the CoRE dependency graph.
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Figure 46. Dependency Graph

App.2.4 MONITORED AND CONTROLLED VARIABLE DEFINITIONS
This section contains the teamwork data dictionary entries defining monitored and controlled variables.

con_Report = Report_ _Type + ASCII_Report.

PhysicalInterpretation

while Report_Type=SOS_Report broadcasting data defined by DDE
SOS_Data

while Report_Type=Wind_and_Temperature_Report broadcasting data
defined by DDE Wind_and_Temperature_Data

while Report_Type=Weather_History_ Report broadcasting data defined by
DDE Weather_History_Data

while Report_Type=Airplane_Detailed_Report broadcasting data defined

by DDE Airplane_bDetailed_Data

while Report_Type=Ship_Detailed_Report broadcastihg data defined by
DDE Ship_Detailed_bData

while Report_Type=None, no broadcasting

con_Red_Light = [ "On” | "Off* ).

o o e e o e s e e e o e e s i
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PhysicalInterpretation if con_Red_Light=On the buoy light is on
if con_Red_Light=0ff the buoy light is off

mon_Air_Temperature = Temperature.
PhysicalInterpretation The temperature of the air ten feet above the
surface of the water in degrees centigrade.

mon_Buoy_Location = Location.

PhysicalInterpretation Location of buoy on the earth.

mon_Emergency_Button = [ “Pressed” | "Released”].
PhysicalInterpretation
if EmergencyButton = “Pressed,” then the button is pressed,
if EmergencyButton = “Released,” then the button is not pressed.

mon_Light_Command = [ "Red_Light_On* | ~Red_Light Off"}.
PhysicalInterpretation The Request from a passing ship to turn the
buoy light on (to find the buoy) or off.

mon_Omega_Error =
<Lat_Offset>Error_Correction + <Lon_Offset>Error_Correction.
PhysicalInterpretation
The correction needed to more accurately determine location from
the Omega broadcasts, based upon the Omega ground unit monitoring
the Omega transmissions.

mon_Reset_SO0S = [ “True” | “False” 1.

PhysicalInterpretation A passing vehicle requests that the S0OS signal
stop broadcasting.

mon_Time = [ “t0” | “Startup” | t }.

PhysicalInterpretation The elapsed time since system startup.

mon_Vessel_Request = [ "Airplane_Detailed_Report_Request” |
*Ship_Detailed_Report_Request” | "History_Report_Reguest”].

PhysicallInterpretation
Represents requests for reports from passing vessels.

mon_Water_Temperature = Temperature.

Values -4 <= mon_Water_Temperature <= 100
Physicallnterpretation The temperature of the water four feet below the
surface of the water in degrees centigrade.

mon_Wind_Direction = Direction.

v o i s i . S i et o
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PhysicalInterpretation The direction the wind is blowing measured 10
feet above the surface of the water.

mon_Wind_Magnitude = Magnitude.
PhysicallInterpretation
The speed of the wind in nautical miles per hour, measured
10 feet above the surface of the water.

App.2.5 INPUT AND OUTPUT VARIABLES

This section contains the teamwork data dictionary entries defining input and output variables.

in_Air_Temperature_Sensor = BYTE
Hardware Air temperature sensors
Values -128 <= in_Air_Temperature_Sensor <= 127
DataTransfer Ports Bl and B2
DataRepresentation 8-bits, two’s-complement integer

in_Button_Indicator = [ "2#1lxxxxxxx#* | “2#0x00cxxx#”]
Hardware Emergency button on buoy
Values see above
DataTransfer Port E
DataRepresentation 8-bits

in_Incoming_Radio_Message =
[ 1 * Red_Light_On *
| *2" * Red_Light Off *
| *3* * History_Report_Request *
| 74* * Airplane_Detailed Report_Request *
| *5% * sShip_Detailed_Report_Request *
| *6* * Terminate_SOS_Signal *
| #77]. * Location_Correction_Request +
in_Location_Correction_Data, see it‘s DDE *
Hardware Radio receiver
Values
Byte 1 indicates one of None, Red_Light_On, Red_Light_Off,
History_Report_Request, Airplane_Detailed_Report_Request,
Ship_Detailed_Report_Request, Terminate_SOS_Signal, or
Location_Correction_Request.
in_Location_Correction_Data(Bytes 2 & 3): Contains
Location_Correction_bData when Byte 1 indicates
Location_Correction_Request, otherwise, Bytes 2 and 3
are unused.
DataTransfer Port F
DataRepresentation
3 bytes: Byte 1: 16#01# = Red_Light_On,
16%02# = Red_Light_Off,
16#03# History_Report_Request,
16#044% Airplane_Detailed_Report_Request,

[}
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16#05# = Ship_Detailed_Report_Request,
164#06# = Terminate_SOS_Signal,
16#07# = Location_Correction_Request,

others = None.

Byte 2: if Byte 1 = Location_Correction_Request then:
8-bit two’'s complement integer representing
latitude Omega error in kilometers
otherwise unused.

Byte 3: if Byte 1 = Location_Correction_Request then:
8-bit two’s complement integer representing
longitude Omega error in kilometers
otherwise unused.

in_Location_Correction_Data = <u>BYTE + <1>BYTE.
Hardware Radio receiver
Values -128 <= in_location_Correction_bata.u <= 127
~128 <= in_Location_Correction_Data.l <= 127
DataTransfer Port F
DataRepresentation 2 Bytes: see DDE for in_Incoming_Radio_Message

in_Omega_System_Input = <Latitude>Digital_Angle + <Longitude>Digital_Angle
Hardware Omega navigation system
Values see DDE for Digital_Angle
DataTransfer Port D
DataRepresentation see DDE for Digital_Angle

IN_Relation_for_mon_Time =
mon_Time = in_Time (and in_Time = ~mon_Time)

mon_Time is the system time elapsed since startup.

in_Time =
Hardware system clock
Values see DDE for mon_Time

DataTransfer supplied by run-time system
DataRepresentation supplied by run-time system

in_Water_Temperature_Sensor = BYTE
Hardware Water temperature sensors
Values -128 <= in_Water_ Temperature_Sensor <= 127
DataTransfer Ports Al and A2
DataRepresentation 8-bits, two’s-complement integer

in_Wind_Sensors = <North>Sensor + <South>Sensor +
<East>Sensor + <West>Sensor
Note: in_Wind_Sensors is indexed by the direction corresponding to one
of the sensors, North | South | East | West. Each sensor
measures the force of the wind coming from its respective
direction. Note that any force on a sensor means the opposing
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sensor should not register any value (not ((N>0 and S>0) or
(E>0 and wW>0))).

Hardware Four wind sensors

Values 0 <= <*>in_Wind_Sensor <= 255

DataTransfer Ports Cl1 (North sensor), C2 (South sensor),
C3 (East sensor), and C4 (West sensor)

DataRepresentation Each port has 8-bits, unsigned integer

out_Light_Switch = [ 72#lxocooc#$” | "2#0x000mxk”] .
Hardware Buoy light
Values see above
DataTransfer Port H
DataRepresentation 8-bits

out_Outgoing_Radio_Message = Report_Code + Page_Count + Page_of_Text.
Hardware Radio transmitter
DataTransfer Port G
DataRepresentation record
Report_Code at 0 range 0..7
Page_Count at 1 Byte range 0..7
Page_of_Text at 2 Byte range 0..510 x 8
end record

App.2.6 EVENT AND TERM DEFINITIONS

This section contains the teamwork data dictionary entries defining events and terms. These terms and
events are referenced by other CoRE artifacts. Note that some of the events are used in the definitions
of the inverse of value functions (not REQ, IN, or OUT relations). Also, in some cases, the definitions
of events are incomplete — some do not define frequency profile.

event_Airplane_Detailed_Report_Request =
@T (mon_Vessel_Request = "Airplane_Detailed_Report_Request”)

FrequencyProfile
MinimumInterval 1.0 second
ExpectedInterval 30 minutes
MaximumInterval N/A

event_Button_Indicator_Reset = @T(in_Button_Indicator = *2#0xxxxxxx#")
event_Button_Indicator_Set = @T(in_Button_Indicator = "2#1xxo000ux#”)
event_Emergency_Button_Pressed = @T(mon_Emergency_Button = “Pressed”)
event_Emergency_Button_Released = @F (mon_Emergency_Button = “Pressed”)

event_History_Report_Request =

@T (mon_Vessel_Request = "History_Report_Request”)
FrequencyProfile
MinimumInterval 1.0 second
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ExpectedInterval 30 minutes
MaximumInterval N/A

@T(in_Incoming_Radio_Message = *“1")

event_Incoming_Radio_Message_1l

event_Incoming Radio_Message_2 @T(in_Incoming_Radio_Message = "2”")

event_Incoming_ Radio_Message_3 @T(in_Incoming_Radio_Message = "3")

@T{in_Incoming_Radio_Message = "4")

event_Incoming Radio_Message_4

event_Incoming Radio_Message_5 @T(in_Incoming_Radio_Message = "5")

event__Incoming_Radio_Message_6 @T{in_Incoming_Radio_Message = “6”")
event__Incoming_Radio_Message_7 = @T(in_Incoming_Radio_Message = "7")
event_Omega_Update = @T(mon_Omega_Error{t) /= mon_Omega_Error{(t - 1))

event_Outgoing_Radio_Message =
@F (out_Outgoing_Radio_Message.Report_Code = "2#0xxxxxxx#”)

@T{ [mon_Time MOD 30 seconds] = 0)

event_Periodic_30_Second

Lt}
1

event_Periodic_60_Second @T([mon_Time MOD 60 seconds]

Period

MinimumInterval 57.5 seconds
ExpectedInterval 60.0 seconds
MaximumInterval 62.5 seconds

Q)

event_Red_Light_Off = @T(mon_Light_Command = "Red_Light_ Off*)

FrequencyProfile
MinimumInterval 10 seconds
ExpectedInterval 30 minutes
MaximumInterval N/A

event_Red_Light_On = @T(mon_Light_Command = *Red_Light_On*)

FrequencyProfile
MinimumInterval 10 seconds
ExpectedInterval 30 minutes
MaximumInterval N/A

event_Report_Available = @F({~con_Report.Report_Type = "None”)

event_Reset_SO0S = @T(mon_Reset_S0S

*True*)

event_Ship_Detailed_Report_Request =
@T(mon_Vessel_Request = ”"Ship_Detailed_Report_Request”)
FrequencyProfile
MinimumInterval 1.0 second
ExpectedInterval 30 minutes
MaximumInterval N/A
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term_Airplane_Detailed Report =
mon_Buoy_Location
+ term _Averaged_Air_Temperature
+ term_Averaged_Water_Temperature
+ term_Averaged_Wind_Direction
+ term_Averaged_Wind_Magnitude.

term_Averaged_Air_ Temperature =
ROUND [(SUM i: 0 <= i <= 5 : mon_Air_Temperature (t - 10 x i)) / 6]
Since there are two air temperature sensors,
term Averaged_Air_Temperature is in fact the averaged air
temperatures from the two sensors.

term_Averaged_Water_ Temperature =
ROUND [(SUM i: 0 <= i <= 5 : mon_Water_Temperature (t - 10 x 1)) / 6]}
Since there are two water temperature sensors,
term Averaged_Water_Temperature must in fact average the averaged
water temperatures from the two sensors.

term_Averaged_Wind_Direction =
Angle_Of (VECTOR_SUM {VECTOR (mon_Wind Direction (t),
mon_Wind_Direction (t - 30))} / 2)

term_Averaged_Wind_Magnitude =
ROUND ([mon_Wind Magnitude(t - 30) + mon_Wind_Magnitude(t)] / 2)

term_Ship_Detailed_Report (control flow) =
mon_Buoy_Location
+ term_Averaged_Air_Temperature
term_Averaged _Water_Temperature
term_Averaged Wind_Direction
term_Averaged_Wind_Magnitude.

+ 0+ o+

term_SOS_Report = mon_Buoy_Location.

term_Weather_ History_ Report =
* The set of term_Wind_and Temperature_Report(i), where i = t-136_800,
t-136_740, ..., t (i.e., step by 60 seconds). That is, the
term_Wind_and_Temperature_Report at every 60 second interval over the
last 48 hours. *

term_Wind_and_Terperature_Report =
term_Averaged_Air_Temperature
+ term_Averaged_Water_Temperature
+ term_Averaged Wind_Direction
+ term_Averaged_Wind Magnitude.

term_Wind_Vector =
* This term is used in the description of how mon_Wind Magnitude and
mon_Wind_Direction relate to in_Wind_Sensors. *
<X>Magnitude + <Y>Magnitude.
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Using conventions, let North be the Y-axis, and East be the X-axis.
Then by the definition of mon_Wind_Direction, it is the angle in degrees
measured clockwise from North.

Therefore, the equivalent vector, (x,y) is defined by:
x = mon_Wind_Magnitude x SIN{360 - mon_Wind_Direction),
y = mon_Wind_Magnitude x COS(360 - mon_Wind_Direction).

Which can be simplified to,
x = - mon_Wind_Magnitude x SIN(mon_Wind_Direction),
y = mon_Wind Magnitude x COS(mon_Wind_ Direction).

o o T e e ey v e i Yo e

~mon_Wind_Magnitude in knots =
SQRT (SQUARE (in_Wind_Sensor.South + in_Wind_Sensor.North) +
SQUARE({in_Wind_Sensor.West + in_Wind_Sensor.East ))

~mon_Wind_Direction in degrees {(where 0=North, 90=East,
180=South, and 270=West) =
if (in_Wind_Sensor.West > 0) AND ({in_Wind_Sensor.South > 0) then
= ROUND(INVTAN(in_Wind_Sensor.West / in_Wind_Sensor.South) + 180)
elsif (in_Wind_Sensor.West > 0) AND (in_Wind_Sensor.North > 0) then
= ROUND (INVTAN(in_Wind_sSensor.North / in_Wind_Sensor.West) + 270)
elsif (in_Wind_Sensor.East > 0} AND (in_Wind_Sensor.North > 0) then
= ROUND(INVTAN(in_Wind_Sensor.fast / in_Wind_Sensor.North))
elsif (in_Wind_Sensor.East > 0) AND (in_Wind_Sensor.South > 0) then
= ROUND(INVTAN(in_Wind_Sensor.South / in_Wind_Sensor.East) + 90)
elsif (in_Wind_Sensor.West <= 0) AND (in_Wind_Sensor.East <= () AND
(in_Wind_Sensor.South > 0) then
= 180
elsif (in_Wind_Sensor.West <= 0) AND (in_Wind_Sensor.East <= 0} AND
{in_Wind_Sensor.South <= 0) then
=0

App.2.7 cLASS_SYSTEM_MODE_SPECIFICATION

The class_System_Mode_Specification requirements class encapsulates the mode machine for the
HAS Buoy and the monitored variable mon_Reset_SOS.

App.2.7.1 Mode Machines
Figure 47 illustrates the HAS Buoy mode machine in the form of a state-transition diagram.

mode_System _Mode = [ “"mode_SOS” | “mode_Normal” ].

Initial Vvalue *mode_Normal”
PhysicallInterpretation
The current state of the system:
*mode_SOS®” = currently transmitting SOS signals,
*mode_Normal” = all other times.
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mode_SOS

event_Emergency_Button_Pressed

event_Reset_SOS

mode_Normal

Figure 47. Mode Machine for mode_System_Mode

App.2.7.2 IN and OUT Relations

Figure 48 illustrates the IN relation for mon_Reset_SOS. Figure 49 illustrates the inverse of the IN
value function for mon_Reset_SOS.

Event in_Incoming_Radio_Message

event_Reset_SOS nG?

Figure 48. IN Relation for mon_Reset_SOS

Event ~mon_Reset_SOS

e ] EE TR 2 DR T T Y P

event_Incoming_Radio_Message_6 "True”

Figure 49. IN’ for mon_Reset_SOS

timing Radio_Receiver =
Device *“Active”

Events: event_Airplane_Detailed_Report_Request,
event_Ship_Detailed_Report_Request,
event_History_Report_Request,
event_Red_Light_On,
event_Red _Light_Off,
event_Reset_S0S,
event_Omega_Update

Tolerance N/A
Delay 6.0 seconds

App.2.8 CLASS_AIR_INTERFACE

The class_Air_Interface requirements class encapsulates the monitored variables mon_Air_Temperature,
mon_Wind_Magnitude, and mon_Wind_Direction.

App.2.8.1 IN and OUT Relations

Figure 50 illustrates the IN relation for mon_Air_Temperature. Figure 51 illustrates the inverse of the
IN value function for mon_Air_Temperature.
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R
Condition E in_Air_Temperature_Sensor
[ ]
prrcccvcncrcccccn- - -: -------------- - - - - - - = > S - - g
- o --- - o o el 1 —————————————— - D D D D S D S P S W S AP P D R A S R D S e -y
True i TRUNCATE (256 x (mon_Air_Temperature + 100) / 200) — 128

Figure 50. IN Relation for mon_Air_Temperature

Condition

~ mon_Air_Temperature

ST TS

Figure 51. IN’ for mon_Air_Temperature

timing_Air_ Temperature_Sensor =
Device “Passive”
Tolerance
Delay 1 second

Figure 52 illustrates the IN relation for mon_Wind. Figure 53 illustrates the inverse of the IN value
function for mon_Wind.

timing_Wind_Sensors =
Device *Passive”

Tolerance
Delay 1 second

App.2.8.2 NAT Relations
{(d mon_Air_ Temperature / dt) < MAX_RATE_AIR_TEMPERATURE_CHANGE
(d mon_Wind_Direction / dt) < MAX RATE_WIND_DIRECTION_CHANGE
{d mon_Wind_Magnitude / dt) < MAX_RATE_WIND_MAGNITUDE_CHANGE
App.2.9 CLASS_WATER_INTERFACE

class_Water_Interface encapsulates the monitored variable mon_Water _Temperature.
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App.2.9.1 IN and OUT Relations

Figure 54 illustrates the IN relation for mon_Water_Temperature. Figure 55 illustrates the inverse of
the IN value function for mon_Water_Temperature.

HH

Condition | ! in_Water_Temperature_Sensor
t
(]

i
1
True  {} TRUNCATE(25S x (mon_Water_Temperature + 4) / 104)

Figure 54. IN Relation for mon_Water_Temperature

[}
Condition | ~ mon_Water_Temperature

(104 x in_Water_Temperature_Sensor / 255) — 4

Figure 55. IN’ for mon_Water_Temperature
timing_Water_Temperature_Sensor =
Device “"Passive”

Tolerance
Delay 1 second

App.2.9.2 NAT Relations

-4 <= mon_Water_Temperature <= 100 (degrees Celsius)

(d mon_Water_Temperature / dt) < MAX_ RATE_WATER_TEMPERATURE_CHANGE
App.2.10 cLass_Buoy_LOCATION

The class Buoy Location requirements class encapsulates the monitored variables
mon_Buoy_Location and mon_Omega_Error.

App.2.10.1 IN and OUT Relations

Figure 56 illustrates the IN relation for mon_Buoy_Location. Figure 57 illustrates the inverse of the
IN value function for mon_Buoy_Location.
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H
Event 1 in_Omega_System_Input
e e emmmecee e b e cecm e~ s cmcmememm——————————
Pr S an Gm wn n D Gy R G S G R S W Sy s Sm e S A - - 1. ﬂ' -------------------------------------
event_Periodic_30_Second !} |(mon_Buoy_Location + mon_Omega_Error) —

[ ]
g E in_Omega_System_Input| < 0.4 km

Figure 56. IN Relation for mon_Buoy_Location

~ mon_Buoy_Location

T

]

'

!

T
. i
! Latitude <=

1 (Degrees <=MAX(Latitude>in_Omega_System_Input.Bytes_1&2,359),
: Minutes <= MAX(<Latitude>in_Omega_System_Input.Byte_3, 59),

H Seconds <= MAX(<Latitude>in_Omega_System_Input.Byte_4, 59) +

|
]
'
|
'
]
1
1
{
]
]

event_Periodic_30_Second MAX(<Latitude>in_Omega_System_Input.Byte_5, 99) / 100),

Longitude <=
Degrees <= MAX<Longitude>in_Omega_System_Input.Byte_1&2,359
Minutes <= MAX(<Longitude>in_Omega_System_Input.Byte 3, 59),
Seconds <= MAX(<Longitude>in_Omega_System_Input.Byte 4, 59) +
MAX( <Longitude>in_Omega_System_Input.Byte_5, 99) / 100)

Figure 57. IN’ for mon_Buoy_Location

timing_Omega_System =
Device “"Periodic” @ 30 seconds
Tolerance
Delay 10 seconds

Figure 58 illustrates the IN relation for mon_Omega_Error. Figure 59 illustrates the inverse of the
IN value function for mon_Omega_Error.
App.2.10.2 NAT Relations
(d mon_Buoy_Location / dt) < MAX_CHANGE_LOCATION
App.2.11 cLASS_VESSEL_INTERFACE

The class_Vessel Interface requirements class encapsulates monitored variable mon_Vessel Request
and controlled variable con_Report.
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Event ~ mon_Omega_Error
e ccccarccemcccer e cc s m e ——--- ke o = > = = e - - - - - - o]
o O D A P P A e P e - > = . - - e e o

Lat_Offset <= in_Location_Correction_Data.u,
Lon_Offset <= in_[ ocation_Correction_Data.l

L]
[]
]
1
1
]
[
]
[}
]
]
]
]
]
]
]
]
]
]
]
[}
)
]
]
]
]
]
]
]
]
]
]
]
{
)

event_Incoming_Radio_Message_7

Figure 59. IN’ for mon_Omega_Error

App.2.11.1 REQ Relations

Figure 60 illustrates the REQ relation for con_Report. The NAT_Relation_for_con_Report_Timing
makes the events in this table effectively synchronous.

behavior_of_con_Report =

.t o e s ot e e e e e S B e e e e iy . o et AR s i e i P e i

——— e — ———

ControlledVariable con_Report

InitialvValue *None”

ModeClass Mode_Class_for_mode_System_Mode

SustainingConditions N/A

ValueFunction see REQ_Relation_for_con_Report

Tolerance see individual monitored variables that are
used to build the different kinds of reports

NATConstraints N/A

InitiationDelay 7.5 seconds

-- Periodic Scheduling Constraints --

Events event_Periodic_60_Second

InitiationTermination initiated upon expiration of InitiationDelay,
never terminates

CompletionDeadline for event_Periodic_60_Second, 5.0 seconds

-~ Demand Scheduling Constraints --

Events event_Ship_Detailed_Report_Request,
event_Airplane_ Detailed_Report_Request,
event_History Report_Request
CompletionDeadline for event_Ship_Detailed_Report_Request, 5.0 minutes
for event_Airplane_Detailed_Report_Request, 2.0 min.
for event_History_Report_Request, 6.0 minutes
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App.2.11.2 IN and OUT Relations

Figure 61 illustrates the IN relation for mon_Vessel_Request. Figure 62 illustrates the inverse of the
IN value function for mon_Vessel_Request.

Event in_Incoming_Radio_Message
foscossoozoooooxzscoososozszozozoooipszocoossooooITIsooosoIood
event_History_Report_Request ”3”
event_Airplane_Detailed_Report_Request 4"
event_Ship_Detailed_Report_Request ”s”

Figure 61. IN Relation for mon_Vessel_Request

Event ~mon_Vessel_Request
k::::::::::::::::::::::::::::::: S SSCSSSCCCSISRCEIIS=S=ITSSs=S
event_Incoming_Radio_Message_3 ”History_Report_Request”
event_Incoming_Radio_Message 4 ”Airplane_Detailed_Report_Request”
event_Incoming_Radio_Message 5 ”Ship_Detailed_Report_Request”

Figure 62. IN’ for mon_Vessel_Request
Section App.2.7.2 contains the specification of timing information related to the radio receiver.

Figure 63 illustrates the OUT relation for con_Report. Figure 64 illustrates the inverse of the QUT value
function for con_Report. Each ~con_Report maps to con_Report. ASCII_Report.Number_of Pages
out_Outgoing_Radio_Messages. Iterator identifies the number within that range.

timing_Radio_Transmitter =
Device “"Active”
Events: event_Outgoing Radio_Message
Tolerance
Delay 10 seconds
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App.2.11.3 NAT Relations

Figure 65 illustrates a NAT relation for con_Report. This NAT relation ensures that the events in
REQ_Relation_for_con_Report do not occur at the same time.

Event mon_Vessel_Request

event_Periodic_60_Second ”None”

Figure 65. NAT Relation for con_Report_Timing

App.2.12 cLASS_LIGHT_INTERFACE

The class_Light_Interface requirements class encapsulates controlled variable con_Red_Light.

App.2.12.1 REQ Relations

Figure 66 illustrates the REQ relation for con_Red_Light.

Event con_Red_Light
event_Red_Light_On ”On”
event_Red_Light Off "Off”

Figure 66. REQ Relation for con_Red_Light

behavior_of_con_Red_Light =

—- Demand Scheduling Constraints --

ControlledVariable con_Red_Light
InitialValue "Off”
ModeClass N/A
SustainingConditions N/A
ValueFunction see REQ Relation_for_con_Red_Light
Tolerance N/A
NATConstraints N/A
InitiationDelay 7.5 seconds
CompletionDeadline 1.25 seconds
Events event_Red_Light_On,
event_Red_Light_Off

App.2.12.2 IN and OUT Relations

Figure 67 illustrates the IN relation for mon_Light Command. Figure 68 illustrates the inverse of the
IN value function for mon_Light_Command.

Section App.2.7.2 contains the specification of timing information related to the radio receiver.
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Event in_Incoming_Radio_Message
I (8 RS
event_Red_Light On "1”
event_Red_Light_Off "2r

Figure 67. IN Relation for mon_Light Command

Event ~ mon_Light_Comman
DSOS
event_Incoming_Radio_Message 1 "Red_Light_On”
event_Incoming_Radio_Message_2 "Red_Light_Off”

Figure 68. IN’ for mon_Light_Command

Figure 69 illustrates the OUT relation for con_Red_Light. Figure 70 illustrates the inverse of the OUT
value function for con_Red_Light.

out_Light_Switch con_Red_Light
o CoITITITTTITTINCTTITITIIITE
7 2# 1oooooo# ™ ”On”
2#0x00000# ™ »Off”

Figure 69. OUT Relation for con_Red_Light

~con_Red_Light out_Light_Switch

------------- L T L LT Y Ty R YR

?On” 72 # 1xooooooc#”
”Off” »2#0xx0cox#”

Figure 70. OUT" for con_Red_Light

timing_Light_Switch =
Device “Continuous”
Tolerance N/A
Delay 500ms

App.2.13 CLASS_SAILOR_INTERFACE

The class_Sailor_Interface requirements class encapsulates monitored variable mon_Emergency Button.
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App.2.13.1 IN and OUT Relations

Figure 71 illustrates the IN relation for mon_Emergency_Button. Figure 72 illustrates the inverse of
the IN value function for mon_Emergency_Button.

Event in_Button_Indicator
E -------- P L T L L P Y X ] bada- : --------------
event_Emergency_Button_Pressed *2# 1oooooa#”
event_Emergency_Button_Released "2# (hoooookx #”

Figure 71. IN Relation for mon_Emergency_Button

Event =~ mon_Emergency Button
I A S
event_Button_Indicator_Set "Pressed”
event_Button_Indicator_Reset "Released”

Figure 72. IN’ for mon_Emergency_Button

timing_Emergency_Button =
Device “Active”
Events: event_Emergency_ Button_Pressed,
event_Emergency_Button_Released
Tolerance N/A
Delay 100ms

App.2.14 OTHER DATA DICTIONARY ENTRIES

This section contains the remaining data dictionary entries.
Angle = Degrees + Minutes + Seconds.
Angle_Of = Angle_Of ({X,Y}) = COTAN (Y/X}), X /=0
ASCII = * ASCII(X) : ASCII_Report :=

NOTE: ASCII(A + B) = ASCII(A) & ASCII(B), where "&* implies string
concatenation

if X is of type TEMPERATURE:

Four ASCII characters, with leading ‘-’ and zeros if necessary,
representing the temperature in degrees centigrade specified by
X;

if X is of type LOCATION: A total of 27 ASCII characters: 13 for
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latitude, 13 for longitude, separated by one space;
Latitude and longitude are each represented by the following
ASCII characters:
1-3) Degrees, with leading zeros if necessary
4) The degrees symbol (superscript o)
5~6) Minutes, with a leading zero if necessary
7) The minutes symbol (‘)
8-9) Whole seconds, with a leading zero if necessary
10) Decimal point (’.‘)
11-12) Hundredths of seconds, with a leading zero if necessary
13) Seconds symbol (’*’).

if X is of type DIRECTION:

Three ASCII characters, with leading zeros if necessary,
representing the direction in degrees from north (0 = north,
90 = east, 180 = south, 270 = west) specified by X.

if X is of type MAGNITUDE:
Three ASCII characters, with leading zeros if necessary,
representing the magnitude in knots specified by X.*

ASCII_Report = 1 { Page_of_Text } Number_of_Pages.
Degrees = * Q0 .. 359 *.
Digital_Angle = * A digital representation of an angle. *

DataRepresentation

S Bytes:
Bytes 1&2: degrees latitude range 0 .. 65_535, unsigned integer
Byte 3: minutes latitude range 0 .. 255, unsigned integer
Byte 4: whole seconds latitude range 0 .. 255, unsigned integer

Byte 5: 1/100th seconds latitude range 0 .. 255, unsigned integer

Direction =
* 0 .. 359 degrees (0 = north, 90 = east, 180 = south, 270 = west). *

Error_Correction = * A measure of length in kilometers, range -128 .. 127. *

InMode =

InMode(S) :BOOLEAN := (mode_System_Mode = S}
Location = <Latitude>Angle + <Longitude>Angle
Magnitude = * Nautical miles per hour, range 0 .. 250. *
Minutes = * 0 .. 59. *

Number_of_ Pages = * The total number of Page_of_Text report pages to be
transmitted (range 1 .. 16). *

Page_Count =
Bits 0-3: 4-bits range 1 .. 16 representing total number of pages in
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message
Bits 4-7: 4-bits range 1 .. 16 representing number of page being
transmitted

Page_of_Text = * 510 bytes of ASCII text. *

Report_Code = [ ~2#10000001%~ | ~2#10000010#%#" | ~2#10000011#~
| *2#10000100#~ | *2#10000101#~ | ~2#0x0oaoxx#”]

Report_Type =
[ "SOS_Report” | *Wind_and_Temperature_Report” |
| "Airplane_Detailed_Report” | “Ship_Detailed_Report*”
| “Weather_History_Report* | “None” ].

Seconds = * 0.00 .. 59.99 *,

Sensor = * range of values 0..255 ~*

t = * current time *

Temperature = * -100 .. 100 degrees centigrade. *

APP3 PROCESS STRUCTURE

This section contains the ADARTS process structure that was built from the CoRE specification for
the HAS Buoy problem. The notation for representing process architecture diagrams is based upon
a mapping to teamwork Ada Structure Graph notation described in Kirk and Wild (1992).

This section is divided into the following four subsections:

e Section App.3.1 contains the initial process architecture diagram created by mapping artifacts
of the CoRE software requirements specification to ADART'S processes.

¢ Section App.3.2 contains the process behavior specifications corresponding to the processes
on the initial process architecture diagram.

¢ Section App.3.3 contains the process architecture diagram that resulted from applying the
ADARTS process clustering criteria to the processes on the initial process architecture dia-
gram.

e Section App.3.4 contains the process behavior specifications corresponding to the processes
on the final process architecture diagram.

App.3.1 INITIAL PROCESS ARCHITECTURE DIAGRAM

Figure 73 illustrates the ADARTS initial process architecture diagram derived from the CoRE
specification. The process behavior specifications in Section App.3.2 describe how the criteria applied
in deriving the set of processes. Note that the arrows between processes on the initial process architec-
ture diagram do not indicate message passing or invocation — they simply indicate data dependencies
or data flow between processes. Message communication will be specified after clustering processes.
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Appendix: HAS Buoy Case Study

App.3.2 INITIAL PROCESS BEHAVIOR SPECIFICATIONS

This section contains the process behavior specifications associated with the processes on the initial
process architecture diagram in Figure 73. Note that teamwork state-event matrices (SEMs) and pro-
cess activation tables (PATs) were used to specify the logic of processes in stimulus/response form. Sec-
tions App.3.2.1 through App.3.2.27 each contain a process behavior specification corresponding to
one of the processes on the initial process architecture diagram.

App.3.2.1 Determine_Wind_Direction

Requirements: IN_Relation_for_mon_Wind,
term Wind_Vector
Criteria: Determine_Wind_Direction is an INt process
Inputs: Wind_Sensors message
Outputs: wWind_Direction data
Frequency: once per 30 seconds
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 74
Stimulus 'E Response

e cerenccccacme- -

L T R N L L L T L L T T P R T T e Y T T 2 L e

[
*

1

{ North <—~ Wind_Sensors(C1)

! South <—~ Wind_Sensors(C2)

! East <—— Wind_Sensors(C3)

! West <—— Wind_Sensors(C4)

! Wind_Direction <-—

i if (West > 0) AND (South > 0) then use ROUND(INVTAN(West / South) + 180)

H elsif (West > 0) AND (North > 0) then use RO (INVTAN(North / West) + 270)
H elsif (East > 0; AND zNorth > 0; then use ROUND(INVI‘ANéEast / North)

! elsif (East > 0) AND (South > 0) then use ROUND(INVTAN(South / East) + 90)

! elsif (West <= 0; SEast <= 0; AND gSouth > 0) then use 180

! elsif (West <= 0) AND (East <= 0) AND (South <= 0) then use 0

v write Wind_Direction to the Wind_Direction data store

received Wind_Sensors

b o o

Figure 74. Process Logic for Determine_Wind_Direction

App.3.2.2 Determine_Wind_Magnitude

Requirements: IN_Relation_for_mon_Wind,
term_Wind_Vector
Criteria: Determine_Wind_Magnitude is an INt process
Inputs: Wind_Sensors message
OQutputs: Wind_Magnitude data
Frequency: once per 30 seconds
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 75

App.3.2.3 Determine_Air_Temperature

Requirements: IN_Relation_for_mon_Air_Temperature,
Criteria: Determine_Air _Temperature is an INt process

112




Appendix: HAS Buoy Case Study

Stimulus

North <—-—~ Wind_Senso Cl}

South <— - Wind_Sensors(C2

East <~— Wind_Sensors(C3)

West <—— Wind_Sensors(C4)

Wind_Magnitude <—-
il (West > 0) AND (South > 0) use SQRT(SQUARE(South) + SQUARE(West))
elsif (West > 0) AND (North > 0) use SQRT(SQUARE(North) + SQUARE(West))
lsif (East > 0) AND (North > 0) use SQRT(SQUARE(North) + SQUARE(East))
elsif (East > 0) and (South > 0) use SQRT(SQUARE%South) + SQUARE(East))

L s & el

received Wind_Sensors

elsif (West <= 0) AND (East <= 0) AND (South > 0) use South

elsif (West <= 0) AND t <= 0) AND (North > 0) use North

elsif (North <= 0) AND (South <=0 East > () use East

elsif (North <= 0) AND (South <= 0) AND (West > 0) use West

elsif (North <= 0) AND (South <= 0) AND (East <= 0) AND (West <= 0) use 0
write Wind_Magnitude to Wind_Magnitude data store

T L

Figure 75. Process Logic for Determine_Wind_Magnitude

Inputs: Air_Temperature_Sensor message
Outputs: Air_Temperature data
Frequency: twice per 10 seconds (1 per air temperature sensor)
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 76
Stimulus Response

pecncvancsveccc s s avs e - P EX T L - e - > - - - - - - - - -

Air_Temperature <—— 200 x (Air_Temperature_Sensor + 128) / 256 — 100\
wrife Air_Temperature to the Air_Temperature data store

received Air_Temperature_Sensor

Figure 76. Process Logic for Determine_Air_Temperature

App.3.2.4 Determine_Water_Temperature

Requirements: IN_Relation_for_mon_Water_Temperature,
Criteria: Determine_Water_Temperature is an INt process
Inputs: Water_Temperature_Sensor message
Outputs: Water_Temperature data
Frequency: twice per 10 seconds (1 per water temperature sensor)
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 77
e Stimulus ______ o eeomeoo-ooReSponse c——— !

Water Temperature <~—— (104 x Water_Temperature_Sensor) / 255 — 4
write Water_Temperature to the Water_Temperature data store

received Water_Temperature_Sensor

Figure 77. Process Logic for Determine_Water_Temperature
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App.3.2.5 Determine_Buoy_Location

Requirements: IN_Relation_for_mon_Buoy. Location,
Criteria: Determine_Buoy_Location is an INt process
Inputs: Omega_System _Input message,

Omega_Error message
Outputs: Buoy_Location data
Frequency: once per 30 seconds for Omega_System_ Input,

see DDE event_Incoming_Radio_Message_7
Execution Time:

Priority: Medium
Errors Detected: None
Logic: See Figure 78
Stimulus Response

Buoy_Location.Latitude <~ -
Degrees <= MAX <Latitude>Omega_Ssystem_lnput.Bytes 1&2, 359),
inutes <= MAX(<Latitude>Omega_System_Input.Byte 3, 59),
Seconds <= MAX(<Latitude>Omega_Svstem_Input.Byte 3, 59) +
MAX(<Latitude>Omega_System_Input.Byte_5,99)/100),
) Buoy_Location.Longitude <—— .
received Omega_System_Input (Degrees <= MAXE <Longitude>Omega Sgstem_lnput‘B es_1&2, 359),
ystem_Input. yte:43, 59),
+

Minutes <= (<Longitude>Omega_
Seconds <= MAX(<Longitude>Omega_System TInput.Byte 3, 59)
MAX(<Longitude>Omega_System_Input.Byte_5,99) / 100)
Buoy_Location <—— Adjust_for_Error (Buoy_Location, Omega_Error)
write Buoy_Location to Buoy_Location data sfore

received Omega_Error store Omega_Error locally for future calculations of Buoy_Location

Figure 78. Process Logic for Determine_Buoy_Location

App.3.2.6 Determine_Emergency_Button

Requirements: IN_Relation_for_mon_ Emergency_Button,

Criteria: Determine_Emergency_Button is an INt process
Inputs: Button_Indicator message

Outputs: Emergency. Button message

Frequency: see DDEs for event_Emergency Button_Pressed and

event_Emergency. Button_Released
Execution Time:

Priority: Medium
Errors Detected: None
Logic: See Figure 79
Stimulus E Response
k ----- - - - - - - - - o = e = - = -
e wc—- - o - - - P o o e o o i s Sy D A . S 4 A D = G T D e o

Emergency_Button <—— ”Pressed”

send Emergency_Button to Determine_System_Mode
else

Emergency_Button <—— "Released”

H
[)
]
T
5 if (Button_Indicator = 2#1x00000x#) then
[)
[ ]
received Button_Indicator E
t
]
]

Figure 79. Process Logic for Determine_Emergency_Button
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App.3.2.7 Determine_Vessel_Request

Requirements: IN_Relation_for_mon_Vessel_Request,
Criteria: Determine_Vessel_Request is an INt process
Inputs: Incoming Radio_Message message

Outputs: Vessel_Request message

Frequency: see DDEs for event_Incoming_Radio_Message_3,

event_Incoming_Radio_Message_4, and
event_Incoming_Radio_Message_5
Execution Time:

Priority: Medium
Errors Detected: None
Logic: See Figure 80
Stimulus ! E Response |
L LT T m .o —----- - = - = - - - - - - - - - -
.---..---—-----—--------—-----_-I.t-- -------- Crmsmesoee -~ - - - - - - - b
case Incoming_Radio_Message is
when3 =>
Vessel_Request <—- "History_Report_Request”
send Vessel_Request to Generate_History_Report
. . . whend4 =>
received Incoming_Raio_Message Vessel_Request <—— "Airplane_Detailed_Report_Request”
send Vessel_Request to Generate_Airplane_Detailed_Report
} when 5 =>
Vessel_Request <~—— "Ship_Detailed_Report_Request”
send Vessel_Request to Generate_Ship_Detailed_Report

Figure 80. Process Logic for Determine_Vessel_Request

App.3.2.8 Generate_Periodic_Reports

Requirements: REQ_Relation_for_con_Report,
term_SOS_Report,
term Wind_and_Temperature_Report
Criteria: Generate_Periodic_Reports is a REQ process
Inputs: System_Mode message,
Buoy_Location data,
Air_Temperature data,
Water_Temperature data,
Wind_Magnitude data,
Wind _Direction data,
Time_60 event

Outputs: Report message

Frequency: See DDE for behavior_of_con_Report
Execution Time:

Priority: High

Errors Detected: None

Logic: See Figure 81

App3.2.9 Process_Red_Light_Request

Requirements: REQ_Relation_for_con_Red_Light
Criteria: Process_Red_Light_Request is a REQ process
Inputs: Light_Command message
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P L L L L L T L T e L e e Y e P R L L e Y S L L L L T

4

-

E if (System_Mode = "mode_SOS”) then

1 Report.Report_Type <—~— ”"SOS_Report”

1 SOS_Report <—— read Buoy_Location data store

: Report.ASCII_Report <~— ASCII(SOS_Report)

H send Report to Set_Outgoing_Radio_Message_Value

} elsif (System_Mode = "mode_Normal”) then

! Report.Report_Type <—— "Wind_and_Temperature_Report”

! read Water_Temperature values from Water_Temperature data store

‘ calculate term_Averaged_Water_Temperature

read Air_Temperature values from Air_Temperature data store

calculate term_Averaged_Air_Temperature

read Wind_Direction values from Wind_Direction data store

calculate term _Averaged_Wind Direction

read Wind_Magnitude from Wind_Magnitude data store

calculate term_Averaged_Wind_Magniutde

Wind_and_Temperature_Report <—— (
term_Averaged_Water_Temperature, term_Averaged_Air_Temperature,
term_Averaged_Wind_Direction, term_Averaged_Wind_Magnitude)

Report. ASCII_Report = ASCII(Wind_and_Temperature_Report)

send Report to Set_Outgoing_Radio_Message_Value

write Report to the Report_History data store

when Time_60

received System_Mode store current System_Mode locally
Figure 81. Process Logic for Generate_Periodic_Reports
Outputs: Red_Light message
Frequency: See DDE for behavior_ for_con_Red_Light
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 82
Stimulus ‘' Response
...................... l.*---------...----------------------—--------d

e mema e~ e~ ———————————————————————— ]
+ if (mon_Light_Command = "Red_Light_On”) then
H Red_Light <=~ "On”
! else

! Red_Light <—— "Off”

: send Red_Light to Set_Light_Switch_Value

Figure 82. Process Logic for Process_Red_Light_Request

App.3.2.10 Monitor_Air_Temperature_Sensors_Multiple

Requirements: in_Air Temperature_Sensor, and
IN_Relation_for_mon_Air_Temperature
Criteria: Monitor_Air Temperature_Sensors_Multiple is an entity

modeling INs process. There is one instance of this
process for each of the two air temperature sensors.

Inputs: Alir_Temperature_Sensor data,
Time_10 event

Outputs: Air_Temperature_Sensor message

Frequency: every 10 seconds

Execution Time:
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Priority:

Medium

Errors Detected: None

Logic: See Figure 83
Stimulus H Response
C:'.':::.'.:::::::::::‘H:::::::::.'.::::'.':::::::::::::::::Z::::::::::::::::::

]
when Time_10 i
{

Air_Temperature_Sensor <~ -- Read (RegisterB1 or RegisterB2)
send Air_Temperature_Sensor to Determine_Air_Temperature

Figure 83. Process Logic for Monitor_Air_Temperature_Sensors_Multiple

App.3.2.11 Monitor_Wind_Sensors

Requirements: in_Wind_Sensors,

Criteria:
Inputs:

Outputs:
Frequency:

IN_Relation__for_mon_Wind
Monitor_Wind_Sensors is an INs process
Wind_Sensors data,

Time_30 event

Wind_Sensors message

every 30 seconds

Execution Time:

Priority:

Medium

Errors Detected: Wind sensors device error

Logic: See Figure 84
. 1
Stimulus ! Response
.............. b ecccccccrcccrcccac e e v e nm e ——————————
----------- e e X T Y e N L L L T T Ty e T T T P T L

)
]
[}
[}
]
[}
]
[]
i
whenTime 30 {1 ((Wind Sensors.East > 0) AND (Wind_Sensors.West > 0)) then
1
1]
[}
[}
4
]
1]

Wind_Sensors.North <~ — Read(RegiserC1
Wind_Sensors.South <~ —Read(RegisterC2
Wind_Sensors.East <—— Read(RegisterC3)
Wind_Sensors.West <—— Read(RegisterC4)
if (Wind_Sensors.North > 0) AND (Wind_Sensors.South > 0)) OR

ere is a device error
else
send Wind_Sensors to Determine_Wind_Magnitude
send Wind_Sensors to Determine_Wind_Direction

Figure 84. Process Logic for Monitor_Wind_Sensors

App.3.2.12 Monitor_Water_Temperature_Sensors_Multiple

Requirements: in_Water_Temperature_Sensor, and

Criteria:

Inputs:

Outputs:
Frequency:

IN_Relation_for_mon_Water_Temperature
Monitor_Water_Temperature_Sensors_Multiple is an entity
modeling INs process. There is one instance of this
process for each of the two water temperature sensors.
Water_Temperature_Sensor data,

Time_10 event

Water_Temperature_Sensor message

every 10 seconds

Execution Time:

Priority:

Medium
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Errors Detected: None

Logic: See Figure 85
Stimulus ' i Response

Water_ Temperature_Sensor <— ~ Read (RegisterAl or RegisterA2)

when Time_10 send Water_Temperature_Sensor to Determine_Water_Temperature

——————p
-

Figure 85. Process Logic for Monitor_Water_Temperature_Seasors_Multiple

App.3.2.13 Monitor_Location_Correction_Data

Requirements: in_Location_Correction_Data,
IN_Relation_for_mon_Omega_Error
Criteria: Monitor Location_Correction_Data is an INs process
Inputs: Incoming_Radio_Message data,
Receiver_Interrupt event
Outputs: Location_Correction_Data message
Frequency: See DDE for event_Incoming_Radio_Message_7
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 86
Stimulus ' Response
::::'::'""""""‘:"ff""""":" """""""""""""""""" seesees
cmemeememmec———————— R
11 Read (RegisterF)
11 if (RegisterFByte_1 = 16#07#) then
received Receiver_Interrupt | Location_Correction_Data.u <—— RegisterF.Byte_2
1 Location_Correction_Data.l <—— RegisterFByte 3
n send Location_Correction_Data to Determine_Omega_Error

Figure 86. Process Logic for Monitor_Location_Correction_Data

App3.2.14 Monitor_Omega_System_Input

Requirements: in_Omega_System_Input,
IN_Relation_for_mon_Buoy Location
Criteria: Monitor_Omega_System_Input is an INs process
Inputs: Onmega_System_Input data,
Time_30 event
Outputs: Omega_System_Input message
Frequency: every 30 seconds
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 87

App.3.2.15 Monitor_Incoming_Radio_Messages

Requirements: in_Incoming_Radio_Message,
IN_Relation_for_mon_Reset_SOS,
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Stimulus ' Response
IZI:IZZ:ZZZZI:Z,}ZiZZIZI::IZZZIIZIIZZIZIZIIII.’.:ZZIZIIIZZIIIZZZZZIZI

{1 Omega_System_Input <—~— read(RegisterD) where
HH (Latitude.Degrees <~ — RegisterD.Bytes_1&2
" Latitude. Minutes < —— RegisterD.Byte_3
‘e Latitude.Seconds < —— RegisterD.Byte 4
i Latitude.Hundredths <—— RegisterD.Byte_5

when Time_30 ¢ Longitude.Degrees <— —RegisterD.Bytes_6&7
[}
P
[ I ]
1
[N ]
11
|

Longitude Minutes <—— RegisterD.Byte_8

Longitude.Scconds <—— RegisterD.Byte_9

Longitude Hundredths < —— RegisterD.Byte_10)
send Omega_System_Input to Determine_Buoy_Location

Criteria:
Inputs:

Outputs:
Frequency:

Execution Time:

Figure 87. Process Logic for Monitor_Omega_System_Input

IN_Relation_for_mon_Omega_Error,
IN_Relation_for_mon_Vessel_Request,
IN_Relation_for_mon_Light_Command
Monitor_Incoming_Radio_Messages is an INs process
Incoming_Radio_Message data,
Receiver_Interrupt event
Incoming_Radio_Message message

see DDEs for event_Incoming_Radio_Message_1,
event_Incoming_Radio_Message_2,
event_Incoming_Radio_Message_3,
event_Incoming_Radio_Message_4,
event_Incoming_Radio_Message_5,

and event_Incoming Radio_Message_6

Priority: Medium
Errors Detected: None
Logic: See Figure 88
Stimulus Response
Read (RegisterF)
case RegisterF.Byte_1 is

received Receiver_Interrupt

when 16#01# =>
Incoming_Radio Messabaie.Byte_l <-— "Red_Light On”
send Incoming_Radio_Message to Determine_Light_Command
when 16#02# =>
Incoming_Radio_Message Byte_1 <—— "Red_Light Off”
send Incoming_Radio_Message to Determine_Light_Command
when 16#03 =>
Incoming_Radio_Message.Byte_1 <—— “History_Report_Request”
send Incoming_Radio_Message to Determine_Vessel_Request
Whil: . #R:; M ) Detailed_R
coming_Radio_Message Byte_1 <—— "Airplane_Detailed_Report_Request”
send Incoming_Radio_Message to Determine_Vessel_Request por=ea
Whg:l‘ 16#05#11-:(? M Shi ailed_R
coming_Radio_Message.Byte_1 <—— "Ship_Detailed_Report_Request”
send Incoming_Radio_Message to Determine_Vessel_Request Req
when 16#06 =>
Incoming_Radio_Message.Byte_1 <~— "Terminate_SOS_Signal”
send Incoming_Radio_ essafe to Determine_Resei_SO
when 16#07# => null =—handled by Monitor_Location_Correction_Data

Figure 88. Process Logic for Monitor_Incoming_Radio_Messages
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Requirements:

Criteria:
Inputs:

Outputs:
Frequency:

Execution Time:
Priority:
Exrrors Detected:
Logic:

App.3.2.16 Monitor_Button_Indicator

in_Button_Indicator,
IN_Relation_for_mon_Emergency_Button
Monitor_Button_Indicator is an INs process
Button_Indicator data,

Button_Interrupt event

Button_Indicator message

see DDEs for event_Emergency_ Button_Pressed and
event_Emergency. Button_Released

Medium
None
See Figure 89

Stimulus

S L L T T P e T Y

received Button_Interrupt

read Button_Indicator from RegisterE
send Button_Indicator to Determine_Emergency_Button

e e - -
.------:_I--.
]
[]
[]
1
]
[]
[]
[]
[}
[]
t
]
!
\
]
[}
1
]
]
[}
]
]
]
¢
]
]
]
[}
’
]
3
(]
]
]
]
[]
[}
'
1
§
'
]
1
[]
[}
[]
]
]

Figure 89. Process Logic for Monitor_Button_Indicator

App.3.2.17 Set_Outgoing_Radio_Message_Value

Requirements:
Criteria:
Inputs:

Outputs:
Frequency:
Execution Time:
Priority:

Errors Detected:
Logic:

OUT_Relation_for_con_Report,
Set_Outgoing_Radio_Message_Value is an OUTt process
Report message

Outgoing_Radio_Message message

See DDE for behavior_ for_con_Report

High

None

See Figure 90 (Note: Prioritization of reports must
be enforced.)

App.3.2.18 Set_Light_Switch_Value

Requirements:
Criteria:
Inputs:

Outputs:
Frequency:
Execution Time:
Priority:
Errors Detected:
Logic:

OUT_Relation_for_con_Red_Light
Set_Light_Switch_Value is an OUTt process
Red_Light message

Light_Switch message

See DDE for behavior_of_con_Red_Light

Medium
None
See Figure 91

App3.2.19 Determine_System_Mode

Requirements:
Criteria:

Mode_Machine_for_System_Mode
Determine_System_Mode is a mode process
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—— do same as for "SOS_Report” except assign 2#10000010# to
—-~—Outgoing_Radio_Message.Report_Code

when ”Airplane_Detailed_Report” =>
—~ do same as for "SOS_Report” except assign 2#10000011# to
—~—  Outgoing_Radio_Message.Report_Code

when "Ship_Detailed_Report” =>
—— do same as for "SOS_Report” except assign 2#10000100# to
-~ Outgoing_Radio_Message.Report_Code

when "Weather_History _Report” =>
-~ do same as for "SOS_Report” except assign 2#10000101# to
-~ Outgoing_Radio_Message.Report_Code

Stimulus i E Response
............. B e
............... P o o = - - - - - = - - = = . -
(]
| R el
eport” =
' Page_Count <—~ Length (Report.ASCII_Report) / 510
" Outgoing_Radio_Message.Report_Code <-— 2#10000001#
1 Outgoing_Radio_Message.Page_Count.Bits_0—3 <—- Page_Count
i for Iterator in 1 .. Page_Count loop
HH Outgoing_Radio_Message.Page_Count.Bits4—7 <~ — Iterator
" Outgoing_Radio_Message.  3—-512 <——
1 Report. ASCI_Report(((Page_Number—1) * 510) + 1 ..
" (Page_Number * 510))
i send Outgoing_Radio_Message to Send_Outgoing_Radio_Message
i end for loop
received Report i E when “"Wind_and_Temperature_Report” =>
'
)
]
(]
)
[}
[}
[ ]
[}
[]
]
]
]
]
1
]
[}
]
§

Figure 90. Process Logic for Set_Outgoing_Radio_Message Value

if (RedLight = "On”) then
Light_Switch <—— 2#1x00000c#

elsif (RedLight = "Off”) then
Light_Switch <—— 2#0x0o0oxx#

send Light_Switch to Control_Light_Switch

received Red_Light

g |

Figure 91. Process Logic for Set_Light_Switch_Value

Inputs: Reset__SOS message,
Emergency_Button message
Outputs: System_Mode message
Frequency: See DDEs for event_Incoming_Radio_Message_6 and

event__Emergency_Button_Pressed
Execution Time:

Priority: Medium
Errors Detected: None
Logic: See Figure 92

App.3.2.20 Generate_History_Report

Requirements: REQ_Relation_for_con_Report,
term_Weather_History Report
Criteria: Generate_History Report is a REQ process
Inputs: Vessel_Request message,
Report_History data
Outputs: Report message
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]

Stimulus

P L L L 2 T P P P Y T T Y PR L P Y Y L T

if (System_Mode = "mode_Normal”) then
System_Mode <—- “mode_SOS”

received (Emergency_Button = "Pressed”) R
send System_Mode to Generate_Periodic_Reports

if (System_Mode = "mode_SOS”) then
System_Mode <~ — "mode_Normal”

received (Reset_SOS = "True”) _| ]
send System_Mode to Generate_Periodic_Reports

hercccncnde s e g
hecorccedeccenedolewe

Figure 92. Process Logic for Determine_System_Mode

Frequency: See DDE for behavior_of_con_Report
Execution Time:
Priority: Low
Errors Detected: None
Logic: See Figure 93
Stimulus H_ Response

-rr
] E E Report.Report_Type <—— "Weather_History Report”
received (Vessel_Request = 1+ Report. ASCII_Report <—— read Weather_History_Report from
“History_Report_Request”) |} the Report_History data store and convert to ASCI
! 1 send Report to Set_Outgoing_Radio_Message_Value

Figure 93. Process Logic for Generate_History_Report
App.3.2.21 Generate_Ship_Detailed_Report

Requirements: REQ_Relation_for_con_Report,
term_Ship_Detailed_ Report

Criteria: Generate_Ship_Detailed_Report is a REQ process

Inputs: Vessel_Request message,

Buoy_Location data,
Air_ Temperature data,
Water_Temperature data,
Wind_Magnitude data,
Wind_Direction data

Outputs: Report message

Frequency: See DDE for behavior_for_con_Report
Execution Time:

Priority: Medium

Errors Detected: None

Logic: See Figure 94

App.3.2.22 Generate_Airplane_Detailed_Report

Requirements: REQ_Relation_for_con_Report,

term Airplane_Detailed_Report
Criteria: Generate_Airplane_Detailed_Report is a REQ process
Inputs: Vessel_Request message,

Buoy_Location data,
Air_Temperature data,

12




Appendix: HAS Buoy Case Study

Stimulus

]
]
]
1
[]
]
]
1
[}
+
i
received (Vessel_Request = H
"Ship_Detailed_Report_Request”) E
]

]

]

]

:

:

1

]

)

]

:

Report.Report_Type <—~ "Ship_Detailed_Rcport”
Bu(()?' Location <—— get Buoy_ tion

rea

calculate term_Averaged_Water_Temperature

calculate term_Averaged_Air Tem\geramre
read Wind_Direction values from
calculate term_Averaged_Wind _Direction

calculate term_Averaged Wind_Magnitude

term_Ship_Detailed ieport <~— (Buoy_Location,
term_Averaged_Water_Temperature,
term_Averaged_Air_Temperature,
term_Averaged_Wind_Direction,
term_Averaged_Wind_Magnitude)

send Report to Set_Outgoing_Radio_Message_Value

[}
[ )
[]
)
)
1]
]
]
]
1
[]
f
:
. - ol .
: read Wind_Magnitude from Wind _Magnitude data store
[]
]
[}
t
1
)
[}
[]
1]
[)
[}
[]
:

Water_Temperature values from Water_Temperature data store
read Air_Temperature values from Air_Temperature data store

ind_Direction data store

Report. ASCII_Report <—~ ASCII(term_Ship_Detailed_Report)

D L Y

Outputs:
Frequency:
Execution Time:
Priority:

Exrrors Detected:
Logic:

Figure 94. Process Logic for Generate_Ship_Detailed_Report

Water_Temperature data,
Wind_Magnitude data,

Wind_Direction data

Report message

See DDE for behavior_for_con_Report

Medium
None
See Figure 95

Stimulus

Ty

received (Vessel_Request =

’y

1+ Report.Report_Type <—— "Airplane_Detailed_Report

”Airplane_Detail _Report_Requ&st”). ' —— generate the same report as generated by

« + —— Generate_Ship_Detailed_Report
++ send Report to Set_Outgoing_Radio_Message_Value

»

Figure 95. Process Logic for Generate_Airplane_Detailed_Report

App.3.2.23 Send_Outgoing Radio_Message

Requirements:

Criteria:
Inputs:

Outputs:
Frequency:
Execution Time:
Priority:

Errors Detected:
Logic:

out_Outgoing_Radio_ Message,
OUT_Relation_for_con_Report

Send_Outgoing_Radio_Message is an OUTs process

Outgoing_Radio_Message message
Outgoing_Radio_Message data
See DDE for behavior_of_con_Report

High
None
See Figure 96

App3.2.24 Control_Light_Switch

Requirements:

out_Light_Switch,
QUT_Relation_for_con_Red_Light
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D ... i . RESPOE e ‘
S L T T R L LT T S Py -:—;- ----------------------------------------
received Outgoing_Radio_Message E E write Outgoing_Radio_Message to RegisterG

Figure 96. Process Logic for Send_Outgoing Radio_Message

Criteria: Control_Light_Switch is an OUTs process
Inputs: Light_Switch message
Outputs: Light_Switch data
Frequency: See DDE for behavior_of_con_Red_Light
Execution Time:
Priority: Medium
Errors Detected: Ncne
Logic: See Figure 97
Stimulus ' Response
Fooosoooosoorzzoozcbbooooooooooooooosioooiioooo
—— S
received Light Switch {1  write Light_Switch to RegisterH
[ ]

Figure 97. Process Logic for Control_Light_Switch

App.3.2.25 Determine_Reset_SOS

Requirements: IN_Relation_for_mon_Reset_SO0S,
Criteria: Determine_Reset_SOS is an INt process
Inputs: Incoming_Radio_Message message
Outputs: Reset_SOS message
Frequency: see DDE for event_Incoming Radio_Message_6
Execution Time:
Priority: Medium
Exrrors Detected: None
Logic: See Figure 98
4
Stimulus ' Response
............................... e e cccmcccmemcc e ————
------------------------------- S an o " - - - - - - o]

[ ]
! Reset SOS <—— "True”

received (Incoming_Radio_Message = 6) ! send Reset_SOS to Determine_System_Mode

[}
'
]
[}
-

Figure 98. Process Logic for Determine_Reset_SOS

App.3.2.26 Determine_Light Command

Requirements: IN_Relation_for_mon_Light_Command,

Criteria: Determine_Light_Command is an INt process
Inputs: Incoming_Radio_Message message

Outputs: Light_Command message

Frequency: see DDEs for event_Incoming_Radio_Message_1l, and

event_Incoming_Radio_Message_2

Execution Time:
Priority: Medium
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Errors Detected: None
Logic: See Figure 99

Light Command <—- "Red_Light_On”

received (Incoming_Radio_Message = 1) send Light_Command to Process_Red_Light_Request

Light Command <—— "Red_Light_Off”

received (Incoming Radio_Message = 2) send Light_Command to Process_Red_Light_Request

Figure 99. Process Logic for Determine_Light_Command

App.3.2.27 Determine_Omega_Error

Requirements: IN_Relation_for_mon_Omega_Error,
Criteria: Determine_Omega_Error is an INt process
Inputs: Location_Correction_Data message
Qutputs: Omega_Error message
Frequency: see DDE for event_Incoming_Radio_Message_7
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 100
HH
Stimulus HH Response
e X 4
R T T me i e--- oneenbdoccas - - - - -
e )
. Onzega_Brror <—-
. . . i Lat_Offset <= Location_Correction_Data.u,
received Location_Correction_Data | | Lon_Offset <= Location_Correction_Data.l)
! 1 send Omega_Error to Determine_Buoy_Location

Figure 100. Process Logic for Determine_Omega_Error

App.3.3 PROCESS ARCHITECTURE DIAGRAM

Figure 101 shows the process architecture diagram that resulted from applying the ADARTS process
clustering criteria to the processes on the initial process architecture diagram in Figure 73. The pro-
cess behavior specifications in Section App.3.4 describe how and when the criteria were applied to
obtain the process architecture as illustrated in Figure 101.

App.3.4 PROCESS BEHAVIOR SPECIFICATIONS

This section contains the process behavior specifications associated with the processes on the process
architecture diagram in Figure 101. Note that teamwork SEMs and PATS were used to specify the logic
of processes in stimulus/response form. Sections App.3.4.1 through App.3.4.8 each contain a process
behavior specification corresponding to one of the processes on the process architecture diagram.
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ReqQuirements:

Criteria:

Inputs:

Outputs:

Frequency:
Execution Time:
Priority:
Errors Detected:
Logic:

App.3.4.1 Process_30_Second_Interrupt

IN_Relation_for_mon_Wind, and

term _Wind_Vector,

in_Wind_Sensors,

in_Omega_System_Input,
IN_Relation_for_mon_Buoy_Location
Determine_Wind_Direction and Determine_Wind_Magnitude
(both INt processes) were clustered based on asynchronous
temporal cohesion -~ they were both activated by the
receipt of Wind_Sensors. The resulting process was
clustered with Monitor_Wind_Sensors (an INs process)
based on sequential cohesion. This process was then
clustered with Monitor_Omega_System_Input (INs process)
based on periodic temporal cochesion - they were both
activated at 30 second intervals.

Wind_Sensors data,

Omega_System Input data,

Time_30 event

Wind_Direction data,

Wind_Magnitude data,

Omega_System_Input message

every 30 seconds

Medium
Wind sensors device error
See Figure 102

App.3.4.2 Monitor_Temperature

Requirements:

Criteria:

Inputs:

Outputs:

IN_Relation_for_mon_Air_ Temperature,

in_Air_ Temperature_Sensor,
IN_Relation_for_mon_Water_Temperature,

in Water_Temperature_Sensox

First, the entity modeling, INs processes defined by
Monitor_ Air_Temperature_Sensors_Multiple were clustered
into a single process using entity process inversion.
The resulting was clustered with Determine_Air_
Temperature (an INt process) based on sequential
cohesion. Then, the entity modeling, INs process
defined by Monitor_ Air_Temperature_Sensors_Multiple
were also clustered into a single process using entity
process inversion. This resulting was clustered with
Determine_Air_Temperature {(an INt process) based on
sequential cohesion. Finally, the two resulting
processes were clustered based on periodic temporal
cohesion - they were both activated at 10 second
intervals.

Air_ Temperature_Sensor data,

Water_Temperature_Sensor data,

Time_10 event

Air_ Temperature data,

Water_Temperature
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North <—~ Read(RegiserCl)
South <—~Read(RegisterC2)
East <~ — Read(RegisterC3)
West < —— Read(RegisterC4)
Omega_System_Input <~ ~ read(RegisterD) where
(Latitude.Degrees <—— RegisterD.Bytes_1&2
Latitude.Minutes < —— RegisterD.Byte_3
Latitude.Seconds <~ — RegisterD.Byte_4
Latitude.Hundredths <—— RegisterD.Byte_5
Longitude.Degrees < —— RegisterD.Bytes_6&7
Longitude. Minutes < —— RegisterD.Byte_8
Longitude.Seconds <—~ RegisterD.Byte 9
Longitude. Hundredths < —— RegisterD.Byte_10)
send Omega_System_Input to Omega_Queue
if ((North > 0) AND (South > ()) OR ((East > 0) AND (West > 0)) then
there is a device error
else
Wind_Direction <——
if (West > 0) AND (South > 0) then use ROUND(INVTAN(West / South) + 180)
elsif (West > 0) AND (North > 0) then use ROUND(INVTAN(North / West) + 270)
elsif (East > 0) AND (North > 0) then use ROUND(INVTAN(East / North))
elsif (East > 0) AND (South > 0) then use ROUND(INVTAN(South / East) + 90)
elsif (West <= 0) AND (East <= 0) AND (Souih > 0) then use 180
elsif (West <= 0) AND (East <= 0) AND (South <= 0) then use 0
write Wind_Direction to the Wind_Direction data store
Wind_Magnitude <——
if (West > 0) AND (South > 0) use SQRT(SQUARE(South) + SQUARE(West))
elsif (West > 0) AND (North > 0) use SQRT(SQUARE(North) + SQUARE(West))
elsif §East > 0) AND (North > 0) use SQRT(SQUARE(North) + SQUARE(East))
elsif (East > 0) and (South > 0) use SQRT(SQUARE(South) + SQUARE(East))
elsif (West <= 0) AND (East <= 0) AND (South > 0) use South
elsif (West <= 0) AND (East <= 0) AND (North > 0) use North
elsif (North <= 0) AND (South <= 0) AND (East > 0) use East
elsif (North <= 0) AND (South <= 0) AND (West > 0) use West
elsifﬁNorth <= 0) AND (South <= 0) AND (East <= 0) AND (West <= 0) use ¢
write Wind_Magnitude to Wind_Magnitude data store

when Time_30

B et D e T ettt & 5
N e T T e e e e L EE LT T 5

Figure 102. Process Logic for Process_30_Second_Interrupt

Frequency: every 10 seconds
Execution Time:

Priority: Medium

Errors Detected: None

Logic: See Figure 103

App.3.4.3 Determine_Buoy_Location

Requirements: IN_Relation_for_mon_Buoy_Location,
Criteria: Determine_Buoy_Location is an INt process
Inputs: Omega_System_Input message,

Omega_Error message
Outputs: Buoy_Location data
Frequency: once per 30 seconds for Omega_System Input,

see DDE event_Incoming_Radio_Message_ 7
Execution Time:

Priority: Medium
Errors Detected: None
Logic: See Figure 104
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. HH
Stimulus '

when Time_10
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Air_Temperature_Sensor <—— Read (RegisterB1)

Air_Temperature <—~ 200 x (Air_Temperature_Sensor + 128) / 256 — 100
write Air_Temperature to the Air_Temperature data store
Air_Temperature_Sensor <—— Read (RegisterB2)

Air_Temperature <~~ 200 x (Air_Temperature_Sensor + 128) / 256 ~ 100
write Air_Temperature to the Air_Temperature data store

Water_Temperature_Sensor <—— Read (RegisterAl)
Water_Temperature <—— (104 x Water_Temperature_Sensor_1) / 255 — 4
write Water_Temperature to the Water_Temperature data store
Water_Temperature_Sensor <—— Read (RegisterA2)

Water_Temperature <—— (104 x Water_Temperature_Sensor_1) /255 — 4
write Water_Temperature to the Water_Temperature data store

Figure 103. Process Logic for Monitor_Temperature

Response

or Nmega_Error

received Omega_System_Input

get next entry from Omega_Queue
if entry is Omega_System_[nput then
Buoy LocationLatitude <=
egrees <= MAX(<Latitude>Omega_System_Input.Bytes 1&2, 359),
inutes <= MAX(<Latitude>Omega_System_Input.Byte 3, 59),
Seconds <= MAX(<Latitude>Omega_System_Input.Byte 3, 59) +
. MAX(<Latitude>Omega_System_Input.Byte_5,99) / 100),
Buoy_Location.Longitude <=
grees <= MRX <Longitude>0mega_S§/stem_Input.B es_1&2, 359),
Minutes <= (<Longitude>Omega_System Input.&te 3,59),
Seconds <= MAX(<Longitude>Omega_System_Input.Byte_3, 59) +
MAX(<Longitude>Omega_System_Input.Byte_5,99) / 100)

Buoy_Location <~— Adjust_for_Error SBuoy_Location, Omega_Error)
write Buoy_Location to Buoy_Location data sfore

elsif entry is Omgea_Error then
store Omega_Error locally for future calculations of Buoy_Location

Figure 104, Process Logic for Determine_Buoy_Location

App.3.4.4 Generate_Periodic_Reports

Requirements:

Criteria:

Inputs:

Outputs:
Frequency:
Execution Time:
Priority:

REQ Relation_for_con_Report,
Mode_Machine_for_System _Mode,

term_SOS_Report,

term_Wind_and_Temperature_Report
Generate_Periodic_Reports (a REQ process) was clustered
with Determine_System_Mode (a mode process) based on
functional cohesion.

Mode_Change message (Reset_SOS or Emergency_Button)
Buoy Location data,

Air_ Temperature data,

Water_Temperature data,

Wind_Magnitude data,

Wind_Direction data,

Time_60 event

Report message

See DDE for behavior_of_con_Report

High
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Errors Detected:
Logic:

None
See Figure 105

Stimulus

when Time_60

hbeomcoccacvcuasrersaces

if (System_Mode = "mode_SOS”) then
Report.Report_Type <—— "SOS_Report”
SOS_Report <—— read Buoy_Location data store
Report. ASCII_Report <—— ASCII(SOS_Report)
send Report to Report_Queue
elsif (System_Mode = "mode_Normal”) then
Report.Report_Type <—— "Wind_and_Temperature_Report”
read Water_Temperature values from Water_Temperature data store
calculate term_Averaged_Water_Temperature
read Air_Temperature values from Air_Temperature data store
calculate term_Averaged_Air_Temperature
read Wind_Direction values from Wind_Direction data store
calculate term_Averaged_wWind_Direction
read Wind_Magnitude from Wind_Magnitude data store
calculate term_Averaged_Wind_Magniutde
Wind_and_Temperature_Report <—— (
term_Averaged_Water_Temperature, term_Averaged Air_Temperature,
term_Averaged_Wind_Direction, term_Averaged_Wind_Magnitude)
Report. ASCII_Report = ASCII(Wind_and_Temperature_Report)
send Report to the Report_Queue
write Report to the Report_History data store

o o e o e e e e e e e > -

received Mode_Change

"

- - - -

if (Mode_Change = [Emergency_Button = "Pressed”]) then
if (System_Mode = "mode_Normal”) then
System_Mode <— - "mode_SOS”
if (Mode_Change = [Reset_SOS = "True”]) then
if (System_Mode = "mode_SOS”) then
System_Mode <—— "mode_Normal”

.

Figure 105. Process Logic for Generate_Periodic_Reports

App.3.4.5 Process_Receiver_Interrupt

Requirements:

Criteria:

in_Incoming_Radio_Message,

in_Location_Correction_Data,
IN_Relation_for_mon_Reset_SO0S,
IN_Relation_for_mon_Omega_Error,
IN_Relation_for_mon_Vessel Request,
IN_Relation_for_mon_Light_Command,
REQ_Relation_for_con_Red_Light,

OUT_Relation_ or_con_Red_Light,

out_Light_Switch

Monitor_Incoming Radio_Messages (an INs process) and
Monitor_Location_Correction_Data (an INs process) were
clustered based on asynchronous temporal cohesion - they
were both activated by Receiver_Interrupt. The resulting
process was clustered with Determine_Omega_Error (an INt
process) based on sequential cohesion. Again, the
resulting process was clustered with the following
processes, all based on sequential cohesion:
Determine_Light_Command (an INt process),
Process_Red_Light_Request (a REQ process),
Set_Light_Switch_Value (an OUTt process), and
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Control_Light_Switch (an OUTs process). Sequential
cohesion was then applied to complete the clustering with
Determine_Reset_S0S (an INt process) and
Determine_Vessel_Request (an INt process)..

Inputs: Incoming Radio_Message data,
Receiver_Interrupt event
Outputs: Incoming_Radio_Message message,

Omega_Error message,
Reset_SOS message,
Vessel_Request message,
Light_Switch data

Frequency: see DDEs for event_Incoming Radio_Message_1,
event_Incoming_Radio_Message_2,
event_Incoming_Radio_Message_3,
event_Incoming_Radio_Message_4,
event_Incoming_Radio_Message_5,
event_Incoming_Radio_Message_6,
event_Incoming_Radio_Message_7, and
behavior_of_con_Red_Light,

Execution Time:

Priority: Medium

Errors Detected: None

Logic: See Figure 106

K
3
¢ 1 Read (Register
i1 case R(egisgt‘erF.g)yte_l is
' when 16#01# =>
H Light_Switch <—— 2#1xo0000#
i write Light_Switch to RegisterH
'1  whenl # =>
' Light_Switch <— ~ 2#0xocooo#
write Light_Switch to RegisterH
when 16#03 =>
Vessel Recluest <-—— "History_Report_Request”
received Receiver_Interrupt send Vessel_Request to Request_Queue
= when 16#04# =>
Vessel_Request <~ — "Airplane_Detailed_Report_Request”
send Vessel_Request to Request_Queue
1 when 16#05# =>
Vessel_Request <—— "Ship_Detailed_Report_Request”
send Vessel_Request to Request_Queue
when 16#06 =>
Reset_SOS <—~— "True”
! send Reset_SOS to Transitions_Comm
' when 16#07# =>
: Omega_Error <—— (Lat_Offset <= RegisterFByte_2,
! Lon_Offset <= RegisterEByte_3)
! send Omega_Error to Omega_Queue

Figure 106. Process Logic for Process_Receiver_Interrupt

App.3.4.6 Monitor_Emergency_Button

Requirements: in_Button_Indicator,
IN_Relation_for_mon_Emergency Button,
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Criteria: Monitor_Button_Indicator (an INs process) and
Determine_Emergency_Button (an INt process) were
clustered based on sequential cohesion.

Inputs: Button_Indicator data,
Button_Interrupt event

Outputs: Emergency_Button message

Frequency: see DDEs for event_Emergency_Button_Pressed and

event_Emergency_Button_Released
Execution Time:

Priority: Medium
Errors Detected: None
Logic: See Figure 107
Stimulus i Response
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i1 read Button_Indicator from RegisterE
i } if (Button_Indicator = 2#1x00000c#) then
. " Emergency_Button <—— "Pressed”
received Button_Interrupt E E send Emergency_Button to Transitions_Comm
1+ else
i+ Emergency_Button <—— "Released”
[

Figure 107. Process Logic for Monitor_Emergency_Button

App.3.4.7 Transmit_Reports

Requirements: OUT_Relation_for_con_Report,
out_Outgoing_Radio_Message
Criteria: Set_Outgoing_Radio_Message_Value (an QUTt process) and

Send _Outgoing_Radio_Message (an OUTs process) were
clustered based on sequential cohesion and renamed
Transmit_Reports.

Inputs: Report message

Outputs: Outgoing_Radio_Message data

Frequency: See DDE for behavior_of_con_Report

Execution Time:

Priority: High

Errors Detected: None

Logic: See Figure 108 (Note: Prioritization of reports must be

enforced.)

App.3.4.8 Generate_Detailed_Reports

Requirements: REQ_Relation_for_con_Report,
term_Ship_Detailed_Report,
term_Airplane_Detailed_Report,
term Weather_History_Report

Criteria: Generate_Ship_Detailed_Report,
Generate_Airplane_Detailed_Report, and
Generate_History_Report (all REQ processes) were
clustered based on functional cohesion.

Inputs: Vessel_Request message,

Buoy_ Location data,
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{ get next Report from Report_Queue

! case Report.Report_ is

! when "SOS_Report” =>

i Page_Count <-—— Length (Report. ASCII_Report) / 510

H Outgoing_Radio_Message.Report_Code <— — 2#10000001#

! Outgoing_Radio_Message Page_Count.Bits_0-3 <—— Page_Count
! for Iterator in 1 .. Page_Count loop

‘ Outgoing_Radio_Message.Page_Count.Bits4—7 <—— Iterator

' Outgoing_Radio_Message.Bytes_3—-512 <——

! Report. ASCII_Report(((Page_Number—1) * 510) + 1 ..

! (Page_Number * 510))

) write Outgoing_Radio_Message to RegisterG

. H end for loop

received Report !¢ when "Wind_and_Temperature_Report” =>

1 ~ = do same as for "SOS_Report” except assign 2#10000010# to
: ——~— Outgoing_Radio_Message.Report_Code

! when "Airplane_Detailed_Report” =>

! —— do same as for ”SOS_Report” except assign 2#10000011# to
' -~ Outgoing_Radio_Message.Report_Code

! when ”Ship_Detailed Report” =>

! —~ do same as for "SOS_Report” except assign 2#10000100# to
! —=  Outgoing_Radio_Message.Report_Code

' when “Weather_History_Report” =>

: ~~ do same as for ”SOS_Report” except assign 2#10000101# to
H —-~  QOutgoing_Radio_Message.Report_Code

]

1

[}

- > - G . - - . - - -

Figure 108. Process Logic for Transmit_Reports

Air_Temperature data,
Water_Temperature data,
Wind_Magnitude data,
Wind_Direction data,
Report_History data
Outputs: Report message
Frequency: See DDE for behavior_for_con_Report
Execution Time:
Priority: Medium
Errors Detected: None
Logic: See Figure 109

APP4 CLASS STRUCTURE

This section contains specifications for selected classes derived from the CoRE specification of the

HAS Buoy requirements. Behavior is described formally to take advantage of CoRE’s precision. How-

ever, formal descriptions are not required for class structuring in the ADARTS method.

This section uses the following prefixes i addition to the naming conventions discussed in Section 2.7:
e “param_* identifies a parameter to an operation.

* “result_" identifies the result of an operation.

¢ “state_” identifies an attribute of the abstract state of a class.
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Stimulus

et next Vessel_Request from Request_Queue
if (Vessel_Request = "History Report_Request”) then
Report.Report_Type <—~ "Weather_History_Report”
Report ASCII Report <~ — read Weather_History_Report from
the Report_History data store and convert to ASCII
else
Buoy_Location <—— get Buoy_Location
read Water_Temperature values from Water_Temperature data store
calculate term_Averaged Water_Temperature
read Air_Temperature values from Air_Temperature data store
calculate term_Averaged_Air_Tenwerature
:;lad Wmd_Dir%ction v:éues from Wind_Direction data store
i culate term_Averaged_Wind_Direction
received Vessel Request read Wind_Magnitude from Wind_Magnitude data store
calculate term_Averaged_Wind_Magnitude
Detailed_Report <—— (Buoy_Location,
term_Averaged_Water_Temperature, term_Averaged_Air_Temperature,
term_Averaged_Wind_Direction, term_Averaged_Wind_Magnitude)
Re(%ort.?SCIl_Report < —— ASCII(Detailed_Report) )
if (Vessel_Request = "Airplane_Detailed_Report_Request”) then
Report.Re rt_'l'ypeA‘<rE- - "Zirplane_betgi‘fed'_ Report”
elsif (Vessel_Request = “Ship_Detailed_Report_Request) then
Report.Report_ <—~ "Ship_Detailed_Report”
send Report to Report_Queue

ceccsrcaccegge-ed

- - - = o = = o

e - - .-

Figure 109. Process Logic for Generate_Detailed_Reports

For device interface classes, the abstract state can be the input or output variable associated with the
device. In this case, the naming convention is not followed. The name of the input or output variable
is used instead.

Each parameter to an operation is associated with the CoRE artifact that the parameter represents
(e.g., approximation to monitored variable, term, etc.). It is assumed that the implementation of
classes and objects will make use of strong typing, implying a usage constraint prohibiting usage of the
wrong type of parameter. Because these usage constraints are so ubiquitous, they (and the associated
undesired events) are omitted from the specifications.

App.4.1 AIR_TEMPERATURE_SENSOR DEVICE INTERFACE CLASS
Name: Air Temperature_Sensor Device Interface

Abstraction: Device interface class that defines the interface to the
air temperature sensor, and approximates the value of the Air Temper-
ature monitored variable.

Hidden Information: Details of operating the air temperature sensor
and approximating the Air Temperature monitored variable.

Anticipated Changes: None.
Requirements Traceability:

in_Air_ Temperature_Sensor
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mon_Air_Temperature

In_Relation_for_Air_Temperature

Object(s)

Air_Temperature_Sensor Device Interface object
FORMAL DESCRIPTION
Abstract State: in_Air Temperature_Sensor

Abbreviations:

Abbreviation Definition

Invariants: There are no invariants

Initial Value of Abstract State: The value of in_Air_ Temperature_
Sensor when the system is initiated.

App.4.1.1 Calculate_Air_Temperature Operation

Usage Constraints: None. (IN relation states that a value is always
available).

Undesired Events: An undesired event is returned if the usage
constraint is violated.

Effects: &Each time it is called, this operation retrieves the
current value of the Air Temperature Sensor input data item and uses
it to approximate the current value of the Air Temperature monitored
variable.

Requirements Traceability:
in_Air_Temperature_Sensor
In_Relation_for_ Air Temperature
mon_Air_ Temperature
FORMAL DESCRIPTION
Parameters: There are no parameters to this operation.
Results:

result_Air_ Temperature (value of ~mon_Air_Temperature)

135




Appendix: HAS Buoy Case Study

Abbreviations: See class specification.
Behavior:

Precondition Postcondition

result_Air_Téﬁﬁerétﬁré
~mon_Air_Temperature as defined by
IN’ for mon_Air_Temperature

Valid_Sensor_inﬁut

Maximum Error: 0.5 degree centigrade

NOT (Valid_Sensor_Input) ERROR (device failure)

App.4.2 OMEGA_NAVIGATION_SYSTEM DEVICE INTERFACE CLASS
Name: Omega_Navigation_System Device Interface Class

Abstraction: Device interface class encapsulating the Omega Naviga-
tion System.

Hidden Information: Details of interfacing with the Omega Navigation
Systemn.

Anticipated Changes: Protocol for operating device
Requirements Traceability:
in_Omega_System_Input
Object(s) Omega Navigation System Device Interface object
FORMAL DESCRIPTION
Abstract State: in_Omega_System_Input
Abbreviations: None.
Invariants: There are no invariants

Initial Value of Abstract State: The value of in_Omega_System_Input
when the system is initiated.

Appd.2.1 'Get_Omega_lnput Operation

Usage Constraints: None.

Undesirea Events: None.

Effects: The current value of in_Omega_System_Input is returned.

Requirements Traceability:
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in_Omega_System_Input
FORMAL DESCRIPTION
Parameters: None.
Results:

result_Omega_System_Input (value of in_Omega_System_Input)

Abbreviations: See class specification.
Behavior:

Precondition Postcondition

TRUE “[result_omega_system Input =
in_Omega_System_Input

App.4.3 WATER_TEMPERATURE_SENSOR DEVICE INTERFACE CLASS

Name: Water_Temperature_Sensor Device Interface

Abstraction: Device interface class that defines the interface to the
water temperature sensor.

Hidden Information: Details of interfacing with a water temperature
sensor.

Anticipated Changes: The current version of the Buoy has a single
sensor for water temperature. In the future, the number of water tem-
peratures could change. For this reason, the conversion of the Water
Temperature Sensor input value to an approximation of the Water Tem-
perature monitored variable is encapsulated in a different class.

Requirements Traceability:
in_Water_Temperature_Sensor
Object(s) Water_Temperature_Sensor Device Interface object.
FORMAL DESCRIPTION
Abstract State: in_Water_Temperature_Sensor

Abbreviations:

Abbreviation Definition

Valid_Sehsér;Input
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Invariants: There are no invariants
Initial Value of Abstract State: The value of

in_Air_ Temperature_Sensor when the system is initiated.

App.4.3.1 Read_Water_Temperature_Sensor Operation

Usage Constraints: None (IN relation states that a value is always
available).

Undesired Events: An error is returned if the condition
-128 <= in_Water_Temperature_Sensor <= 127
does not hold.
Effects: The current Water Temperature Sensor value is returned.
Requirements Traceability:
in_Water_Temperature_Sensor
FORMAL DESCRIPTION
Parameters: There are no parameters.
Results:

result_Water_ Temperature_Sensor_Input (value of
in Water_Temperature_Sensor)

Abbreviations: See class specification
Behavior:

Precondition Postcondition

result~Water_iémbeiéﬁure_sensor_Input=
in_Water_Temperature_Sensor
Maximum Error: O

Valid_Sensor_Input

NOT (Valid_Sensor_1Input) ERROR (device failure)

- s

App.4.4 WIND_SENSOR DEVICE INTERFACE CLASS
Name: Wind_Sensor Device Interface class
Abstraction: This class abstracts the wind sensor devices.

Hidden Information: Details of reading from the wind sensors
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Anticipated Changes: The number of wind sensor devices may change.
Requirements Traceability:
in_Wind_Sensors
Object (s):
North_Wind_Sensor object
South_Wind_Sensor object
East_Wind_Sensor object
West_Wind_Sensor object
FORMAL DESCRIPTION

Abstract State: <X>Sensor (Input variable returned by device—see
abbreviations)§.

Abbreviations:

Abbreviation Definition

<South> for South Wind Sensor object
<East> for East Wind Sensor object
<West> for West Wind Sensor object

Valid_Sensor_Input -128 <= <X>Sensors <= 127
Invariants: There are no invariants
Initial Value of Abstract State: The value available from the

corresponding wind sensor when the system is initiated.

App.4.4.1 Read_Wind_Sensor_Input Operation
Usage Constraints: None

Undesired Events: An error is returned of the wind sensor input
value is not in the range 0 to 255 inclusive.

Effects: The current wind sensor value for the wind sensor is
returned.

Requirements Traceability:

6. ‘There are four objects derived from this class. The abbreviation <X> serves todistinguish the abstractstate of different
objects.
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in_Wind_Sensors
FORMAL DESCRIPTION
Parameters: None.
Results:

result_Wind_Sensor_Value (value of <X>Sensor).

Abbreviations:

Behavior:

Precondition Postcondition

Valid_Sensor_InpuE
Maximum Error: 0

NOT (Valid_Sensor_Input) ERROR (device failure)

App.4.5 ASCII_REPORT DATA ABSTRACTION CLASS
Name: ASCII_Report Data Abstraction Class

Abstraction: Data abstraction class which hides the internal struc-
ture of an ASCII report.

Hidden Information: Internal structure of thp report.
Anticipated Changes: No changes anticipated at this point.
Requirements Traceability:

con_Report

REQ Relation for con_Report

OUT Relation for con_Report
Object(s) ASCII_Report object
FORMAL DESCRIPTION
Abstract State:

state_ASCII_Report (value of ~con_Report -- a sequence of ASCII
characters)

state_Next_Page (Natural number—that indicates which page is to be
returned by the Get_Next_Page operation.
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state_Pages_Remaining (Boolean value indicating that some pages in
the current report are yet to be returned by the Get_Next_Page

operation).
Abbreviations:
Abbreviation Definition
Max_Number_Pages 20 pages
Page_Length 1024 ASCII characters
Invariants: There are no invariants

LENGTH (state_ASCII_Report) <= Max_Number_Pages * Page_Length
Initial Value of Abstract State:

state_Pages_Remaining=FALSE

App4.5.1 Set_Report Operation

Usage Constraints: After successfully calling this operation, the
Get_Next_Page operation must be called once for each page of the re-
port. Also, the length of the report must not exceed the storage
capacity of the object derived from this class.

Undesired Events: An error is returned if this operation is called
before all pages of the previous report have been returned, or if the
parameter contains too many characters.

Effects: The next report to be transmitted is recorded internally,
and the first page is available from the Get_Next_Page operation.

Requirements Traceability:
con_Report
REQ Relation for con_Report
OUT Relation for con_Report
FORMAL DESCRIPTION
Parameters:
param_ASCII_Report (value of ~con_Report)
Results: No result is returned.

Abbreviations: See class specification.
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Behavior:

Precondition Postcondition

state_Pages_Remaining=FALSE stéte_ASCII_Report

AND LENGTH(param_ASCII_Report) =param_ASCII_Report
< Max_Report_Length AND state_Next_Page=1
AND state_Pages_Remaining=TRUE
state_Pages_Remaining=TRUE ERROR (Attempt to overwrite pre-
vious report)
LENGTH (param ASCII_Report) ERROR (Report too long)

< Max_Report_Length

App.4.5.2 Get_Next_Page Operation

Usage Constraints: After calling the Set_Report operation, this
operation should be called until all pages of the report have been
returned. This operation should not be called again until after the
next successful call to Set_Report.

Undesired Events: An error is returned if the usage constraint on
sequencing is not observed.

Effects: The next page of the current report is returned. The first
page is returned if this is the first call f~ lowing a call to
Set_Report.

Requirements Traceability:
con_Report
REQ Relation for con_Report
OUT Relation for con_Report
FORMAI. DESCRIPTION
Parameters: There are no parameters.
Results:

result_Report_Page (value: a sequence up to Page_Length ASCII
characters)

result_Last_Page (boolean value—-TRUE indicates that
result_Report_Page contains the last page of the current report.

Abbreviations: See class specification.

Abbreviation Definition

Loﬁ_fh&éxr Page_Leﬁéth*(étate_Nexﬁ;Pége—lf#l

High_Index MAX( Page_Length*state_Next_Page,
LENGTH (state_ASCII_Report))
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Abbreviation Definition

m —— - — —
On_Last_Page High_Index=LENGTH (State_ASCII_Report)
Page_Returned state_ASCII_Report (Low_Index..High_Index)
Behavior:

Precondition Postcondition

state_Pages_Remaining result_Report_Page=Page_Returned
AND result_Last_Page=On_Last_Page
AND state_Pages_Remaining=

NOT (On_Last_Page)

NOT (state_Pages_Remaining) ERROR (No more pages)

App.4.6 Buoy_LOCATION DATA ABSTRACTION CLASS
Name: Buoy_Location

Abstraction: Data abstraction class encapsulating an approximation of
the current location of the buoy.

Hidden Information: Internal representation of the approximation.
Anticipated Changes: Precision of the approximation.
Requirements Traceability:
mon_Buoy_Location
Object (s)
Buoy_Location object
FORMAL DESCRIPTION
Abstract State:
state_Latitude (value of <Latitude>-~mon_Buoy_Location)
state_Longitude (value of <Longitude>~mon_Buoy Location)

state_Latitude_Defined (Boolean value—TRUE if Set_Latitude
operation called at least once).

state_lLongitude_Defined (Boolean value—TRUE if Set_Longitude
operation called at least once).

Abbreviations: None.
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Invariants: None.

Initial Value of Abstract State:
state_Latitude_Defined=FALSE
state_Longitude_Defined=FALS:

Operation(s): 7
Set Latitude® Read Latitude

Set Longitude Read Longitude

App.4.7 SOS_REPORT DATA ABSTRACTION CLASS
Name: SOS_Report Data Abstraction Class

Abstraction: Data abstraction class which hides the format of
~con_Report while in mode_SOS (i.e., the report transmitted every 60
seconds when the buoy is in SOS mode). The report contains a field
which identifies it as an SOS report and the current location (lati-
tude and longitude) of the buoy.

Hidden Information: Format of the report.
Anticipated Changes: Format of the report.
Requirements Traceability:
con_Report
Object (s)
SOS_Report object
FORMAL DESCRIPTION
Abstract State:
state_Latitude (value of <Latitude>~mon_Buoy_ Location)
state_Longitude (value of <Longitude>~mon_Buoy_Location)

state_Latitude_Defined (TRUE if the Set_Latitude Operation has
been called at least once).

state_Longitude_Defined (TRUE if the Set_Longitude Operation has
been called at least once).

7. Descriptions are omitted for brevity.
8. This is similar to the Set_Latitude Operation on the SOS_Report Data Abstraction Class.
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Abbreviations: None.

Invariants: There are no invariants

Initial Value of Abstract State:
state_Llatitude_Defined=FALSE

state_Llongitude_Defined=FALSE

App.4.7.1 Set_Latitude Operation®
Usage Constraints: None.
Undesired Events: None.

Effects: The parameter to this operation is recorded in the latitude
field of the SOS report.10

Requirements Traceability:
con_Report
FORMAL DESCRIPTION
Parameters:
param_Current_Latitude (value of <Latitude>~mon_Buoy_Location).

Results: No result is returned.

Abbreviations: See class specification.
Behavior:

Precondition Postcondition

state_Latitude=parambCurrent_Latitude
state_latitude_Defined=TRUE

App4.7.2 ASCII_Format Operation

Usage Constraints: The buoy location must be defined before this
operation is called.

Undesired Events: An error is returned if the buoy location is not
defined.

9. The Set_Longitude operation is similar and is omitted for brevity.

10. The SOS report also has a field that identifies the type of the report. Because that field is constant, there is no need for
an operation to record it.
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Effects: An ASCII string containing the current buoy location and a
field identifying an SOS report is returned.

Requirements Traceability:
con_Report

REQ_Relation_for_con_Report

FORMAIL DESCRIPTION
Parameters: None.
Results:

result_ASCII_Report (value: of ~con_Report.ASCII_Report -- a
sequence of ASCII characters)

Abbreviations: See class specification.

Abbreviation Definition

Atgé;tioh_ﬁefined

AND state_Longitude_Defined

Behavior:

Precondition Postcondition

Loéaﬁion_befined

ASCII(state_Latitude)
+ ASCII(state_Longitude)

NOT (Location_Defined) ERROR (Undefined Location)

App.4.8 AIR_TEMPERATURE_READINGS COLLECTION CLASS
Name: Air_Temperature Readings Collection

Abstraction: Data collection class which stores a set of up to six
air temperature.

Hidden Information: Method of representing and iterating over the
sequence

Anticipated Changes:
Internal representation of the collection
Algorithms for averaging and modifying the collection.

Requirements Traceability:
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term_Averaged_Air_ Temperature
Object (s)
Air_Temperature_Readings object
FORMAL DESCRIPTION
Abstract State:

state_Collection (Value: A set of up to six elements. The elements
are taken from the same domain as mon_Air_Temperature)

Abbreviations: None.
Invariants:
SI2E(state_Collection)<6

Initial Value of Abstract State: {3

App4.8.1 Record_Air_Temperature Operation
Usage Constraints: None.
Undesired Events: None.

Effects: This operation adds an air temperature reading to the
collection. If the collection is already full, the oldest value is
removed to make room for the value to be added.

Requirements Traceability:
term_Averaged Air_Temperature
FORMAL DESCRIPTION
Parameters:
param_Value -- Value to be added

Results: No result is returned.

Abbreviations: See class specification.
Behavior:
Precondition Postcondition

‘éIEE(state_Collection)<6 w7naidated_state_Col1ection=
state_Collection UNION {param_Value}
SIZE(state_Collection)=6 Updated_state_Collection=

state_Collection
- OLDEST(state_Collection)
UNION {param_Value}

147




Appendix: HAS Buoy Case Study

App.4.8.2 Compute_Averaged_Air_Temperature Operation

Usage Constraints: In the requirements specification,
term_Averaged_Air_ Temperature is defined as an average of six air tem-
perature values, implying that the collection must be full before
this operation can be invoked.

Undesired Events: An error is returned if there are fewer than Max
Size elements in the collection.

Effects: The arithmetic average of the collection is ieturned.
Requirements Traceability:
term_Averaged_Air_ Temperature
FORMAL DESCRIPTION
Parameters: None.
Results:

result_Averaged_Air Temperature (value of ~term Averaged_
Air_Temperature)

Abbreviations: None.

Behavior:

Precondition Postcondition

resuiE_Avéraged_Air_Temﬁéféédfér;
ROUND[SUM(state_Collection) /6]
Maximum Error: 1 degree centigrade

SIZE (state_Collection) <6 Error (Insufficient Data)

App.4.9 SYSTEM_MODE STATE TRANSITION CLASS
Name: System_Mode

Abstraction: State transition class which encapsulates
Mode_Class_£for_mode_System_Mode

Hidden Information: The modes of the mode machine and the transi-
tions between them.

Anticipated Changes: Additional modes and t ‘tions may be added.
Requirements Traceability:

Mode_Class_for_mode_System Mode
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event_Emergency_Button_Pressed
event_Reset_SO0S

Object(s)
System_Mode State Transition Object

FORMAL DESCRIPTION

Abstract State:

state_System Mode (value of ~mode_System_ Mode)
Abbreviations: None.
Invariants: There are no invariants

Initial Value of Abstract State: state_System_Mode=mode_Normal

App.4.9.1 Emergency_Button_Pressed Operation

Usage Constraints: None.

Undesired Events: None.

Effects: The value of the abstract state is Emergency.

Requirements Traceability:
event_Emergency_Button_Pressed

FORMAL DESCRIPTION

Parameters: None.

Results: No result is returned.

Abbreviations: See class specification.
Behavior:

Precondition

state_System_Mbde=NormalWW 7 StéEe_SQSE;mbeaé#Emefgeﬁéy
OR state_System Mode=Emergency

App.4.9.2 Reset_SOS Operation
Usage Constraints: None.

Undesired Events: None.
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Effects: The value of the abstract state is Normal.

Requirements Traceability:

event_Reset_SO0S
FORMAL DESCRIPTION
Parameters: None.

Results: No result is returned.

Abbreviations: See class specification.
Behavior:
Precondition Postcondition

state_Systeﬁ;Mode=Norméi

sbate_Systém;ModéiNbrmél
OR state_System_Mode=Emergency

App.4.9.3 Current_Mode Operation
Usage Constraints: None.
Undesired Events: None.
Effects: The current value of the abstract state is returned.
Requirements Traceability:
REQ Relation_for_con_Report
FORMAL, DESCRIPTION
Parameters: None.
Results:
result_Current_Mode (value of ~mode_System_Mode)
Abbreviations: See class specification.

Behavior:

Postcondition

Precondition

result_Current_Mode=étate_System_Mode

App.4.10 Buoy_LocaTioNn COMPUTATION CLASS

Name: Buoy Location Computation Class
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Abstraction: Computation class encapsulating the algorithm to derive
~mon_Buoy_Location (i.e., current buoy location) from
~mon_Omega_Error and in_Omega_System_Input

Hidden Information: Details of the algorithm

Anticipated Changes:

Internal representation of intermediate results
Required precision

Requirements Traceability:
IN_Relation_for_mon_Buoy_Location

Object (s)
Buoy_Location Computation object

FORMAL DESCRIPTION

Abstract State: This class has no abstract state.

Abbreviations: None.

Invariants: There are no invariants

Initial Value of Abstract State: Not applicable

App.4.10.1 Estimate_Buoy_Location Operation

Usage Constraints: The sooner this operation is called after retriev-~
ing in_Omega_System Input, the more precise the result will be.

Undesired Events: None.
Effects: The calculated value of ~mon_Buoy_Location is returned.
Requirements Traceability:
IN_Relation_for _mon_Buoy_Location
FORMAL DESCRIPTION
Parameters:
param_Omega_Error (value of ~mon_Omega_Error)
param_Omega_Input (value of in_Omega_System_Input)

Results:
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result_Buoy_ Location (calculated value of ~mon_Buoy_Location)

Abbreviations: See class specification.
Behavior:

Precondition Postcondition

TRUE

param_Omega_Input - param_Omega_Error

Maximum Error: 0.01 km

App.4.11 WATER_TEMPERATURE COMPUTATION CLASS
Name: Water_ Temperature Computation class

Abstraction: Computation class which encapsulates the algorithm for
converting the value of in_Water_Temperature_Sensor to an
approximation of mon_Water_Temperature.

Hidden Information: Details of the conversion algorithm.

Anticipated Changes: The current version of the Buoy has a single
sensor for water temperature. In the future, the number of water tem-
peratures could change. For this reason, the conversion of
in_Water_Temperature_Sensor to an approximation of

mon_Water Temperature is encaprilated in a class separate from the
Water_Temperature_Sensor device interface class.

Requirements Traceability:

mon_Water_ Temperature

IN_Relation_for Water_Temperature
Object (s) Water_Temperature Computation object
FORMAL DESCRIPTION
Abstract State: This class has no abstract state.
Abbreviations: None.
Invariants: There are no invariants

Initial Value of Abstract State: Not applicable

App.4.11.1 Calculate_Water_Temperature Operation

Usage Constraints: The value of the parameter to this operation must
be in the range [-128 .. 127]
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Undesired Events: An error is returned if the usage constraint is
violated.

Effects: Given a value of in_Water_Temperature_Sensor, this opera-
tion returns an approximation of mon_Water_Temperature.

Requirements Traceability:
mon_Water_Temperature
IN_Relation_for_Water_Temperature

FORMAL DESCRIPTION

Parameters:

param_Water_ Temperature_Sensor (value of
in_Water_Temperature_Sensor)

Results:
result_Water_ Temperature (value of ~mon_Water_ Temperature)

Abbreviations:

Abbreviation Definition

‘;12§VQ= paréﬁ;W;tér_%éﬁperaéﬁgg_ééﬁééf ;= 127

Behavior:

Precondition Postcondition

Wfééuit_Watef_Tehpérature=
~mon_Water_Temperature as defined in
IN’'_for_Mon_Water_Temperature

Maximum Error: 0

NOT(Valid_Parameter) ERROR (Invalid Parameter)

App.4.12 WIND COMPUTATION CLASS
Name: Wind Computation Class

Abstraction: Computation class which encapsulates the algorithms for
deriving approximations of wind direction and magnitude given the
values read from the North, South, East, and West wind sensors. The
algorithms are grouped into a single class because the functions they
compute have several mathematical terms in common, implying that the
algorithms will change together.
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Anticipated Changes: Change to one or both algorithms.

Requirements Traceability:

IN_Relation_for_Wind
term_Wind_Vector
Object (s) Wind Computation object
FORMAL DESCRIPTION
Abstract State: This class has no abstract state.

Abbreviations: The abbreviations below are defined in terms of
parameters to the two operations exported by this class.

Abbreviation Definition

param _Wind Sensors.North >= 0
AND param_Wind_Sensors.South >= (
AND param _Wind Sensors.East >= 0
AND param _Wind_Sensors.West >= 0

Sensor_Values_Non_Negative

X_Axis_Values_Consistent param_Wind_Sensors.East = 0
OR param _Wind_Sensors.West = 0

Y_Axis_Values_Consistent param_Wind_Sensors.North = 0
OR param_Wind_Sensors.South = 0

Valid_Input Sensor_Values_Non_Negative

AND X_Axis_Values_Consistent
AND Y Axis_Values_Consistent

Wind_Velocity_ X Axis IF Wind_Sensors.East>=0
THEN param_Wind_Sensors.East
ELSE param Wind_Sensors.West
Wind_Velocity Y Axis IF Wind_Sensors.North>=0

THEN param_Wind_Sensors.North
ELSE param Wind_Sensors.South

Invariants: There are no invariants

Initial Value of Abstract State: Not applicable

App.4.12.1 Calculate_Wind_Direction Operation

Usage Constraints: The wind sensor readings must be non-negative. The
north and south sensor values cannot be positive at the same time.
The east and west sensor values cannot be positive at the same time.
See the abbreviation Valid_Input in the class specification.

Undesired Events: An error condition is returned if the usage

constraint is violated. See Postcondition for NOT (Valid_Input)
below.
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Effects: Given the four Wind Sensor values read from the four wind
sensors, this operation returns an approximation of the Wind
Direction monitored variable.

Requirements Traceability:
IN_Relation_for_Wind
term_Wind_Vector

FORMAL DESCRIPTION

Parameters:
param_WindSensor .North
param_WindSensor.South
param_WindSensor.East
param_WindSensor.West

Results:
result_Wind_Direction (value of ~mon_Wind_Direction)

Abbreviations:

Abbreviation Definition
-  — .

MAGNITUDE

Calculate_Wind_Magnitude
(param_%WindSensor .North,
param_WindSensor.South,
param_WindSensor.East,
param_WindSensor .West)

ARC_COS Trigonometric functions computation
class.arc_cos

Behavior:

Postcondition

result_Wind_Direction=
ARC_COS(Wind_Velocity X Axis/MAGNITUDE)
Maximum Error: 1 degree of angle

NOT (Valid_Input) ERROR (invalid parameters)

Precondition

App4.12.2 Calculate_Wind_Magnitude Operation

Name: Calculate_Wind_Magnitude
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Usage Constraints: See Calculate_Wind_Direction

Undesired Events: An exception is returned if the usage constraint
is violated. See the second postcondition below.

Bffects: Given the four Wind Sensor values read from the four wind
sensors, this operation returns an approximation of the Wind
Magnitude monitored variable.

Requirements Traceability:
IN_Relation_for_Wind
term_Wind_Vector

FORMAL DESCRIPTION

Parameters:
param_WindSensox .North
param_WindSensor.South
param_WindSensor.East
param_WindSensor .West

Results:

result_Wind_Magnitude (Approximation of monitored variable)

Abbreviations: See class specification.
Behavior:

Precondition Postcondition

SQORT ( Wind_Velocity X _Axis**2
+ Wind_Velocity Y Axis**2)

Maximum Error: 0.5 knot

NOT (Valid_Input) Exception (invalid parameters)

App.4.13 TRIGONOMETRIC_FUNCTIONS COMPUTATION CLASS
Name: Trigonometric_Functions Computation Class

Abstraction: Computation class which hides algorithms for common
mathematical functions from trigonometric.

Hidden Information: Details of the algorithms
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Anticipated Changes:
Precision of the algorithms
Requirements Traceability:
mon_Wind_Magnitude
mon_Wind_Direction
Object (s): Trigonometric_Functions Computation object
FORMAL DESCRIPTION

Abstract State: This class has no abstract state.

Abbreviations: None.
Invariants: There are no invariants
Initial Value of Abstract State: Not applicable

Operation(s): Some of the operations listed are not required by the
HAS-Buoy application. However, this class will include a complete set
of trigonometric operations so that it can be reused in other

applications.
cos arc cos
sin arc sin

tan arc tan
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LIST OF ABBREVIATIONS AND ACRONYMS

ADARTS

NAT
ouT
PAT

REQ

Ada-based Design Approach for Real-Time Systems
Consortium Requirements Engineering
data dictionary entries

first-in, first-out

greatest common divisor

host-at-sea

input

miles per hour

millisecond

nature

output

process activation table

required

real-time structured analysis

stimulus

second

state-event matrix

translation
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